Atmospheric Chemistry During the Accretion of Earth-like Exoplanets

Bruce Fegley, Jr. Planetary Chemistry Laboratory McDonnell Center for the Space Sciences Department of Earth and Planetary Sciences Washington University St. Louis, MO 63130-4899 bfegley@levee.wustl.edu

Accretional Energy			
 Some theories suggest that a magma 	Liquidus temperatures for possible magma ocean		
ocean formed as Earth accreted – Suggested magma ocean temperatures are > 2000 K	Magma type	T _{liq} (K)¹	T _{b.p.} (K) ²
Energy released by accretion of an Earth-	Tholeiite	1433	3270
like planet (1 M_{\oplus} ~ 6 × 10 ²⁴ kg & 1 R_{\oplus}	Komatiite	1838	3341
~ 6370 km) is:	Dunite	1954	3294
$\frac{GM_{\oplus}^{2}}{GM_{\oplus}^{2}} = \frac{(6.67 \times 10^{-11} m^{3} kg^{-1} s^{-2})(6 \times 10^{24} kg)^{2}}{G^{2}} \sim 4 \times 10^{32} Joule$	Forsterite	2163	3540
R_{\oplus} (6370×10 ³ m)	Bulk silicate Earth	1892	3361
Energy to heat up and vaporize bulk	Bulk silicate Mars	1844	3269
silicate Earth (BSE) is:	¹ computed using Magfox code ² computed using MAGMA code		
$E_{vap} = \frac{M_{BSE}}{\overline{\mu}} \times \Delta_{vap} H = \frac{(4 \times 10^{27} g)}{(140 g mol^{-1})} \times 1180 \ kJ \ mol^{-1} \sim 3 \times 10^{31} Jour$	les		
$\frac{E_{accretion}}{E_{vap}} = \frac{GM_{\oplus}^2}{R_{\oplus}E_{vap}} = \frac{4 \times 10^{32} Joules}{3 \times 10^{31} Joules} \sim 10 \Longrightarrow \text{Ac}$	cretion of an inet easily van icate portion!	Earth- oorize	like s the

	Impact E	nergy
ΔE (J)	Size of impactor	Thermal effects
7×10 ²⁷	1.4×10 ²⁰ kg (~mass of asteroid Pallas)	Boil oceans and heat to 2000 K
5×10 ²⁸	1×10 ²¹ kg (~mass of asteroid Ceres)	Melt crust and heat to 2000 K
2×10 ²⁹	4×10 ²¹ kg (~5% mass of Earth's moon)	Vaporize crust and heat to 3200 K
3×10 ³¹	6.8×10 ²³ kg (~mass of Mars)	Vaporize silicate Earth and heat to 3540 K
 Gia Kin Ass - - - - 	In timpact models give temperatu Some accretion models now suggest the ubiquitous etic energy (1/2mv ²) converts into Thermal energy is used to sequentially vaporize liquids, and then heat the gas suming an impact velocity of 10 k ΔE_{impact} (J) = 5×10 ⁷ M, where M = mass Table illustrates the effects of various si Cooling times for these impacts range f smallest impact to 10 ³ – 10 ⁴ years for th	res of 4000 – 5000 K at impacts between large bodies may be thermal energy after an impact heat up solids, melt solids, heat liquids, m s ⁻¹ , the energy of impact is: of impactor (in kg) ized impactors rom on the order of 10 years for the he Mars-sized impact

Possible Ex	trasolar Te	rrestrial Planet	S
Plan	et	Mass	
Eart	h	1 M _⊕	
Glie	se 876d	7 M $_{\oplus}$	
55C	nc e	14 M_{\oplus}	
GJ4	36b	21 M_{\oplus}	
HD1	60691d	14 M_{\oplus}	
HD1	90360c	18 M _⊕	
 Several extrasolar te Indicates that terres other planetary system 	errestrial-size strial planet for tems	planets (see tab rmation occurred ir	le). 1 several
 Also evidence for ac innermost 2 AU (terr protoplanetary disks 	cretion of roo estrial planet (van Boekel	cky material in the t region) of three et al. 2005, Natu	e ire)

Meth Model comp magn	ositions f	or the	•	We used a thermochemical equilibrium model to calculate the composition of silicate atmospheres
Oxide (wt%)	BSE ¹	BSM ²		 Nominal magma ocean composition dry bulk silicate Earth
SiO ₂	45.56	45.39	-	 I emperature range = 2000 – 5000 K based on accretion, giant impact
MgO	36.33	29.71		models, and energetic constraints – 40 gas and 42 melt species were
AI_2O_3	4.73	2.89		included in our calculations
TiO ₂	0.178	0.14	•	check effect of volatiles (H & C) on the atmospheric chemistry
FeO	8.17	17.22	•	use atmospheric adiabatic
CaO	3.75	2.35		profiles for different atmospheric
Na ₂ O	0.349	0.98	•	compositions derive the composition of
K₂O	0.035	0.11	-	condensate clouds in the silicate
¹ BSE = Bulk Silicate Earth, fro ² BSM = Bulk Silicate Mars, fro	om O'Neill & Palmo om Lodders (2000)	e (1998)	_	atmospheres

Cloud condensates (1)				
Cloud compositio	ns for 2000 K at	mosphere	 Condensation sequence for the 2000 K atmosphere along the 	
Cloud	T _{cond} (K)	Z (km) ¹	 adiabat shown in Fig. 4. Size of clouds: 	
Mg ₂ SiO ₄	1955	~4.5	 Most massive cloud is Na₂O; removes all Na from the gas 	
$CaAl_2Si_2O_8(I)$	1931	~7	 2) SiO₂ (cristobalite) 3) Fe₃O₄ 	
CaSiO ₃ (I)	1896	~9.5	4) Mg_2SiO_4 - CaALSi_O_ (I), CaSiO_ (I), TiO_	
SiO ₂ (crist.)	1870	~13	 produce only thin haze layers K does not condense at any 	
Fe ₃ O ₄	1817	~18	 altitude Table gives approximate 	
TiO ₂	1602	~40	 altitudes (z) of the cloud base Holes in the clouds allowing 	
Na ₂ O	1169	~82	 observation of lower atmosphere would be indicative of weather 	
¹ calculated using the dry adiabatic	lapse rate and terrestrial g			

Cloud Condensates (2)				
Cloud compositions for 5000 K atmosphere		000 K	 Condensation sequence for the 5000 K atmosphere along the adiabat 	
Cloud	T _{cond} (K)	Z (km) ¹	shown in Fig. 4.Size of clouds:	
CaMgSi ₂ O ₆ (I)	4751	~26	 Most massive cloud is molten SiO₂, which removes all Si from the gas 	
MgSiO ₃ (I)	4661	~35	2) MgSiO3 (liq)	
Al ₂ O ₃ (I)	4190	~84	3) Na ₂ O (I)	
SiO ₂ (I)	4180	~85	 CaMgSi₂O₆ (I), Al₂O₃ (I), FeO (I), and TiO₂ (I) produce only thin hazes 	
FeO (I)	3618	~142	 K does not condense at any altitude 	
TiO ₂ (I)	2852	~219	 Table gives approximate altitudes (z) of the cloud base 	
Na ₂ O (I)	1730	~330	All condensates are liquids!	
¹ calculated using the dry adiaba	tic lapse rate and terre	strial g	 Liquid droplets may have distinctive optical properties 	

Summary
 Energetic considerations show that enough energy is released during accretion to melt and vaporize an Earth-like terrestrial planet
 Terrestrial planets accreting around other stars should glow in visible to IR regions because their effective temperatures are similar to or greater than those of brown dwarfs such as Gliese 229b
 During accretion, terrestrial planets have silicate atmospheres generated by vaporization of the accreting material
 Major species in the silicate atmospheres are Na, O₂, O, SiO, and if wet, also H₂O
 SiO has strong bands at 4 and 9 microns and masers are possible in very hot silicate atmospheres
- O ₂ is abundant from silicate vaporization and may be observable
 Condensation clouds of liquid and/or solid oxides and silicates form in the silicate vapor atmospheres of hot Earth- like exoplanets