Properties and Composition of the Terrestrial Oceans and
of the Atmospheres of the Earth and Other Planets

Bruce Fegley, Jr.

1. PHYSICAL PROPERTIES AND COMPOSITION
OF THE TERRESTRIAL OCEANS

Geographical data on the areas, volumes, and depths of the
major ocean basins are summarized by Turekian [209].
Many physical properties of seawater are summarized by
Cox [49] and Riley [182]. The major element composition
of seawater is reviewed by Wilson [216]. A comprehensive
discussion of the chemistry of the atmosphere-ocean sys-
tem, of continental weathering, riverine inputs to the
oceans, and the composition of sea water over geologic
time is given in two books by Holland [105,106]. Many in
depth reviews of different aspects of the chemistry of
seawater are given in the multivolume series Chemical
Oceanography, most recently edited by Riley and Chester.
The temperature of ocean surface waters depends on the
geographic location and season of the year. It is also af-
fected by the presence of oceanic currents which transport
waters from northern or southern latitudes. Thus, surface
waters in the Gulf Stream still have relatively high tem-
peratures at northern latitudes. The deeper regions of the
oceans, below about 1 km depth, have a nearly constant
temperature of 275-277 K due to their origins in high lati-
tudes around Greenland and the Antarctic continent. Be-
tween about 100 meters depth, the bottom of the well
mixed layer, and 1 km depth, the temperature of sea water
decreases nearly monotonically to the low values typical
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for the deeper regions of the oceans. This transition region
is known as the thermocline.

The salinity of ocean water is about 35 parts per thousand
by mass (35 %o); variations from about 33 %o to 38 %o are
observed in the open oceans. As illustrated in Table 1, the
composition of sea water is dominated by the six elements
Cl, Na, S, Mg, Ca, and K. Despite the observed variations
in salinity, their concentrations relative to one another are
essentially constant. These elements and the other elements
in sea water which behave similarly are conservative ele-
ments. Variations in their concentrations can be explained
solely by either the addition or subtraction of pure water to
the oceans. Because of this conservative behavior the
salinity of sea water can be determined by measuring the
content of chloride, the most abundant anion in sea water.
The salinity (S) is related to the chlorinity (Cl) by the ap-
proximate equation S(%o) ~ 1.805 Cl(%0) + 0.030, where
both S and Cl are in g/kg of sea water. Cox [49] describes
several methods, including conductivity measurements, for
more accurate and precise measurements of the salinity of
sea water.

Other elements display variable concentrations relative to
local salinity and are nonconservative. Several of these ele-
ments such as C, N (as nitrate), Si, and P are nutrients, and
are generally depleted in surface waters and are enriched in
deeper regions. Many other elements (e.g., Cr, Mn, Fe, Co,
Ni, Cu, Zn, Sr, Cd) have vertical concentration profiles
similar to those of the nutrient elements. However, it is not
always clear if this similarity is due to passive processes
(e.g., coprecipitation, adsorption on dead sinking organ-
isms) or to active biochemical processes. For example,
growth of phytoplankton is apparently limited by the avail-
ability of Fe. On the other hand, Al also displays nutrient-
like profiles but this is probably due to surface inputs by
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TABLE 1. Chemical Composition of Seawater™”

At. Ele-  Dissolved Mean Notes &

No. ment Form Concentration References

1 H H, biogenic or hydrothermal origin

2 He Dissolved He 1.9 nmole/kg non-nutrient dissolved gas

3 Li 178 ng/kg conservative

4 Be 0.2 ng/kg increases with depth

5 B Inorganic boron 4.4 mg/kg conservative

6 C Total CO, 2200 pmole/kg nutrient

7 N N, 590 umole’kg non-nutrient dissolved gas
NO, 30 pumole/kg nutrient

8 O Dissolved O, 150 pmole/kg biologically controlled profile

9 F Fluoride 1.3 mgkg conservative

10 Ne Dissolved Ne 8 nmole/kg non-nutrient dissolved gas

11 Na 10.781 g/kg conservative

12 Mg 1.28 g/kg conservative

13 Al 1 pg/kg nutrient-like profile

14 Si Silicate 110 pmole’kg nutrient

15 Reactive phosphate 2 pmole/kg nutrient

16 S Sulfate 2.712 g/kg conservative

17 Cl Chloride 19.353 g/kg conservative

18 Ar Dissolved Ar 15.6 umole/kg non-nutrient dissolved gas

19 K 399 mg/kg conservative

20 Ca 415 mg/kg conservative (1st. approx.)

21 Sc <1 ng/kg

22 Ti <1 ng/kg

23V <1 ug/kg conservativeé

24 Cr 330 ng/kg nutrient-like profile

25 Mn 10 ng/kg nutrient-like profile

26 Fe 40 ng/kg nutrient-like profile

27 Co 2 ng/kg nutrient-like profile

28 Ni 480 ng/kg nutrient-like profile

29 Cu 120 ng/kg nutrient-like profile

30 Zn 390 ng/kg nutrient-like profile

31 Ga 7-60 ng/kg [164]

32 Ge S ng/kg correlated with silicate

33 As As(V) 2 ug/kg nutrient-like profile

34 Se Total Se 170 ng/kg correlated with phosphate

321
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TABLE 1. (continued).

At. Ele-  Dissolved Mean Notes &

No. ment Form Concentration References

35 Br Bromide 67 mg/kg conservative

36 Kr Dissolved Kr 3.7 nmole/kg non-nutrient dissolved gas
37 Rb 124 pg/kg conservative

38 Sr 7.8 mg/kg correlated with phosphate
39 Y 13 ng/kg conservative (1st approx.)
40 Zr <1 pg/kg

41 Nb 1 ng/kg

42 Mo 11 pg/kg conservative

44 Ru ~1 ng/kg [14]

45 Rh

46 Pd 0.2-0.7 pmole/kg [132]

47 Ag 3 ng/kg

48 Cd 70 ng/kg correlated with phosphate
49 In 0.2 ng/kg '

50 Sn 0.5 ng/kg anthropogenic

51 Sb 0.2 ugkeg conservative

52 Te Total Te 0.6-1.3 pmole/kg [133]

53 1 59 pg/kg correlated with phosphate
54 Xe 0.5 nmole/kg non-nutrient dissolved gas
55 GCs 0.3 ng/kg conservative

56 Ba 11.7 ngkg nutrient-like profile

57 La 4 ng/kg nutrient-like profile

58 Ce 4 ng/kg nutrient-like profile

59 Pr 0.6 ng/kg nutrient-like profile

60 Nd 4 ng/kg nutrient-like profile

62 Sm 0.6 ng/kg nutrient-like profile

63 Eu 0.1 ngkg nutrient-like profile

64 Gd 0.8 ng/kg nutrient-like profile

65 Tb 0.1 ng/kg nutrient-like profile

66 Dy 1 ng/kg nutrient-like profile

67 Ho 0.2 ng/kg nutrient-like profile

68 Er 0.9 ng/kg nutrient-like profile

69 Tm 0.2 ng/kg nutrient-like profile

70 Yb 0.9 ng/kg nutrient-like profile

71 Lu 0.2 ng/kg nutrient-like profile
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TABLE 1. (continued).

At. Ele-  Dissolved Mean Notes &

No. ment Form Concentration References

72 Hf <8 ng/kg

73 Ta <2.5 ng/kg

74 W <1 ng/kg

75 Re 7.2-7.4 ng/kg conservative, [1]
76 Os

77 Ir

78 Pt

79 Au 50-150 fmole/liter [75]

80 Hg 6 ng/kg correlated with silicate
81 TI 12 ng/kg conservative

82 Pb 1 ng/kg anthropogenic
83 Bi 10 ng/kg

90 Th <0.7 ng/kg

92 U 3.2 pg/kg conservative

*Modified from [179]

®Abbreviations: mg/kg = 10°g/kg, ng/kg = 0°g/kg, ng/kg = 10°g/ke, pmole/kg = 10 mole/kg,

fmole/l = 10" mole/liter

dust and decreases at depth as a result of scavenging by or-
ganic particulates and by sedimentation of mineral grains.

Dissolved gases generally have abundance patterns that
are initially controlled by their solubility in surface waters
at the ambient temperature and gas partial pressure. The
mixing produced by waves can also lead to trapping of air
bubbles, which will introduce a deviation from the solubil-
ity controlled abundance. The exceptions to this behavior
are gases such as O,, CO,, CO, H,S, H,, N;O, and N,
which are involved in biological processes. For example,
the O, concentration is higher in surface waters where it is
produced by photosynthesis and is lower in deeper regions
where it is consumed by respiring organisms.

Quinby-Hunt and Turekian [179] discuss several other
factors which also affect the vertical profiles of some ele-
ments in sea water. Radionuclides produced from fission
and fusion bombs (e.g., tritium (T), the bomb component
of 1*C, *Sr, '*’Cs, Pu) are supplied to the ocean from the at-
mosphere and coastal sources. As a consequence their con-
centrations decrease with increasing depth in the oceans.
Likewise, the concentration of Pb, which is an anthropo-
genic input to the oceans, displays similar behavior. On the
other hand, the major source for *He is at oceanic spread-

ing centers; infalling cosmic dust and meteorites are esti-
mated to contribute <25% of the *He in the oceans [140].
Removal processes at the sea floor also influence the distri-
bution of some trace elements and nuclides.

To a first approximation, chemical equilibria between at-
mospheric CO,, dissolved carbonate and bicarbonate, and
CaCO,(s) are responsible for controlling the pH of the
oceans. The relevant equilibria and equilibrium constants
at 298 K are

COz(g) = COz(aq)

K, = 10"

COx(aq) + H,0 = H*(ag) + HCO3(aq)
Keq — 10-6,35

HCOj3(aq) = H*(ag) + CO3 (aq)

Keq =107%

CaCO5(s) = Ca**(aq) + CO3 ™ (aq)

K,, = 10%%

If this system of equations is solved using the constraints
of mass balance, chemical equilibrium, and charge bal-
ance, the derived pH for the observed CO, partial pressure
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TABLE 2. Physical Properties of Planetary Atmospheres*

Planet/Sate Surface Tem- Surface Pres- Surface Grav- Mean Mol. Pressure Scale

llite perature (K)  sure (Bars) ity (cms?)  Wt. (g mole”’) Height (km)"
Mercury®  590-725' <10 372 species species
dependent dependent
Venus® 737 95 887 43.45 15.9
Earth® 288 1.01 978 28.97 8.5
Mars* 215 ~6.36 mbars 372 43.34 1.1
Jupiter® 165+5(1 bar) adiabat P>1 bar 2312 2.22 27
Saturn® 134+4 (1 bar) adiabat P>1 bar 896 2.07 59.5
Uranus® 76+2 (1 bar) adiabat P>1 bar 869 2.64 27.7
Neptune®  71.5%2 (1 bar) adiabat P>1 bar 1100 2.53-2.69 19.1-20.3
Plutof ~50(7) 3 ubars(?)  40(?) ~16-25(7)  ~60
Titan® 94 L5 135 ~28.6 ~20.2
Triton’ 38+4 16+3pbars 78 ~28(7) ~14.4(7)

*Values from [212].
*Values from [186].
“Values from [214].

4Values from [7]. The CO, pressure varies by about 37% due to the annual condensation into & subli-
mation out of the polar caps.

*Values for the temperatures at 1 bar and the equatorial surface gravity for the Jovian planets are from
[135]. The Jovian planets do not have a solid surface. The observed P,T profiles are adiabatic below
the tropopauses and the necessity to transport the observed heat fluxes out of the planets (except Ura-
nus) requires adiabatic P, T profiles at lower levels below those directly probed by spacecraft. An adia-
batic profile is also assumed in theoretical models of Uranus [175].

*Values from [108]. The lower value for the mean mol. wt. corresponds to a pure CH, atmosphere, the
upper value is that chosen by [108].

tValues from [109].

"The pressure scale height values are either at the planetary surface or at the 1 bar level.
‘Temperature of the sunward side of Mercury.

Data from [29,95,211].

¥(7) indicates that the value is uncertain

(~ 0.34 mbars) is about 8.4. This is close to the value of ~
8 observed in sea water.

The concentrations of the major conservative elements in
sea water are controlled by a balance between riverine in-
puts and various loss processes For example, most Na and
Cl are removed from the oceans in pore waters in ocean
sediments, as sea spray, and as evaporites. Magnesium is
mainly removed by hydrothermal exchange. Sulfur is de-
pleted by the deposition of biogenic sediments (which also

depletes Ca) and by hydrothermal exchange. Potassium is
apparently removed by ion exchange with clay minerals to
form illite and by some reactions with basalt, but its mass
balance is not well understood.

2. COMPOSITION OF THE ATMOSPHERES OF
THE EARTH AND OTHER PLANETS

This section presents physical and chemical data on the at-



mospheres of the Earth, the other planets, Titan, the largest
satellite of Saturn, and Triton, the largest satellite of Nep-
tune. The physical properties of the different planetary at-
mospheres are summarized in Table 2; their chemical and
isotopic compositions are summarized in Tables 3-13. The
data in these tables come from various sources. Composi-
tional data on the terrestrial atmosphere are obtained from
direct measurements at ground level, from batloons and
high flying aircraft, ground-based spectroscopy, and satel-
lite measurements. Earth-based remote sensing and in situ
spacecraft measurements provide the data for the other
planets, Titan, and Triton (e.g., sce Hanel et al [98] for a
review of infrared remote sensing techniques). Schematic
P,T profiles for Venus, Earth, Mars, and Titan are illus-
trated in Figure 1 and those for the four Jovian planets are
displayed in Figure 2. The properties of the different
planetary atmospheres are discussed below in order of in-
creasing radial distance from the Sun.

2.1 Mercury

The planet Mercury has a very tenuous atmosphere com-
posed of atomic H, He, O, Na and K. Dayside number den-
sities are 100 to 40,000 atoms cm™ , about two orders of
magnitude lower than the Mariner 10 radio occultation up-
per limit of P < 10"? bars. The atoms in the Mercurian at-
mosphere come from the solar wind (H, He) and from
evaporation of meteoritic material (O, Na, K) impacting
the surface. Recent descriptions of the properties of the
Mercurian atmosphere are given in Vilas et al [212] and
Sprague [192].
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2.2 Venus

The chemical composition of the Venusian atmosphere and
the probable sources and sinks for the gases in it are listed
in Table 3. The isotopic composition of the Venusian at-
mosphere is summarized in Table 4. A comprehensive re-
view of the chemistry and spectroscopy of the atmosphere
of Venus is given by Von Zahn et al [213]. This has re-
cently been updated by Fegley and Treiman [77].

The abundance of SO, (Table 3) decreases with increas-
ing altitude above 48 km (the main cloud base) due to its
photochemical conversion to H,SO, droplets which make
up the global cloud layer. At cloud top levels (~70 km) the
SO, abundance is 100 ppb or less, and has been decreasing
with time during the 1978-1992 period [154]. The water
vapor abundance also decreases above the cloud base to
typical values of a few ppm at cloud top levels [213]. As
indicated in Table 3, the H,O abundance is also altitude de-

Anemt tha +h
pendent in the sub-cloud atmosphere. It decreases from

values of about 150 ppm at 42 km to values of about 20
ppm at the surface [60,153]. The cause(s) for this profile
is/are controversial; formation of another hydrogen bearing
gas or atmosphere-surface reactions may be involved. The
ongoing controversy about the abundance and vertical pro-
file of water vapor on Venus is discussed by Fegley and
Treiman [77]. Data from the Pioneer Venus (PV) and Ven-
era 11/12 spacecraft [87,149,172] also show an apparent
decrease in the CO abundance with decreasing altitude.
The Kr abundance given in Table 3 is also a subject of de-
bate. Inconsistent Kr abundances were obtained by the PV
Large Probe neutral mass spectrometer and the Venera
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Fig. 1. Schematic P,T profiles for the atmospheres of Venus, Earth, Mars, and Titan. Data from Seiff
(1983), Warneck (1988), Barth (1985), and Lindal et al (1983).
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11/12 mass spectrometers [213]. The values given in Table
3 reflect Donahue's analysis of the PV data [59].

The isotopic ratios in Table 4 for C, N, O, Cl, and
**Ar/®Ar are identical to the terrestrial values within the
uncertainties of the measurements. However, the isotopic
ratios for D/H, *Ne/*Ne, and “Ar/*’Ar are not identical.
The D/H ratio on Venus is about 100-120 times larger than
the D/H ratio of the Earth as defined by standard mean
ocean water (SMOW, see Table 6). The *Ne/*Ne ratio is
also larger and is closer to the assumed solar value [174].
The *°Ar/**Ar ratio is about 300 times smaller than the ter-
restrial value. No information is available on the *He/*He
ratio. The implications of the isotopic data for the origin
and evolution of the atmosphere of Venus have been ex-
tensively discussed [134,174].

2.3 Earth

Table 5 summarizes the chemical composition
tant constituents in the non-urban terrestrial troposphere,
Figure 3 displays vertical abundance profiles for important
minor and trace gases in the terrestrial stratosphere, and
Table 6 summarizes the isotopic composition of the noble
gases in the terrestrial atmosphere and of terrestrial stan-
dards for isotopic analysis of H, C, N, O, and CI for com-
parison with data for other planetary atmospheres.
Chamberlain and Hunten [33] summarize atmospheric
chemistry, dynamics, and spectroscopy. Terrestrial atmos-
pheric chemistry is summarized by Warneck {214]. The
different chemical compounds found in the terrestrial at-
mosphere are tabulated by Graedel [90].

The terrestrial atmosphere is divided into several regions,
primarily on the basis of temperature. The troposphere is
the region closest to the surface where temperature de-
creases with altitude. The gradient (lapse rate) is about 6.5
K/km up to the tropopause, at about 12 km, where the
mean temperature is about 216 K (see Figure 1). The re-
gion immediately above the tropopause is the stratosphere.
In contrast to the troposphere which contains about 1-4 %
water vapor by volume, the stratosphere is extremely dry
due to the cold trap at the tropopause. The stratosphere is
also characterized by a temperature increase with increas-
ing altitude up to the stratopause (at about 50 km) where
the temperature peaks. The temperature rise is due to ab-
sorption of solar ultraviolet radiation by O,. The meso-
sphere, where temperature again decreases with altitude,
lies between 50-80 km. The thermosphere where strong
heating occurs due to absorption of solar UV radiation,
leading to extensive photodissociation and photoionization
of N, and O,, is at about 80-100 km.

Important aspects of tropospheric chemistry include bio-
geochemical cycles such as those involving carbon, water,
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Fig. 2. Schematic P,T profiles based on Voyager radio
occultation data for the atmospheres of the Jovian planets
(Lindal 1992).

nitrogen, and sulfur and the production and destruction of
various trace gases (e.g., CH,, other hydrocarbons, SO,, re-
duced sulfur gases, NO,, O,). Important greenhouse gases
produced naturally or via human activity in the tro-
posphere are CO,, CH,, N,0, and the halocarbons. The OH
radical plays an important role in the production and de-
struction of many trace gases as the major oxidizer in
tropospheric chemistry. Hydroxyl radicals in the tro-
posphere are produced from the photolysis of O, to pro-
duce electronically excited O atoms which subsequently
react with H,O to produce two OH radicals from each wa-
ter molecule. The globally averaged mean OH concentra-
tion in the troposphere is about 10°” OH per cm’.

Stratospheric chemistry is closely connected to the O,
layer at 15-35 km, which both shields the Earth from bio-
logically harmful solar UV radiation shorter than about
300 nm and also dissipates the absorbed radiation as heat.
The O, distribution in the stratosphere is controlled by a
balance between production and destruction and by the
transport of O, from regions of net production to regions of
net destruction. In the absence of other perturbing influ-
ences, the production and destruction of O, involves the
four reactions of the Chapman cycle:

O3 + hv(L =180 - 240nm ) —» O+
O+0+M—> 03+ M

O3 +hv(A=200-300nm )—> Oy +
0+03 -—)02+02

This cycle is perturbed by the presence of other trace
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TABLE 3. Chemical Composition of the Atmosphere of Venus

Gas Abundance  Source(s) Sink(s) Notes & References

CO, 96.5+0.8%  Outgassing Carbonate formation [213]

N, 3.5£0.8% Outgassing --- [213]

SO,* 185443 ppm Photochemistry & H,SO, formation & 22km, [172]
130435 ppm  Outgassing CaSO, formation <42 km, [87]

H,0° 150 ppm Outgassing H escape & 42 km, [153]
60 ppm Fe** oxidation 22 km, [153]
20 ppm 0 km, [153]
40 ppm 35-45 km, [19]

Ar 70+25 ppm  Outgassing, primordial ~ --- [213]

CO* 4510 ppm  CO, photolysis Photooxidation cloud top, {40]
30+18 ppm 42 km, [172]
2043 ppm 22 km, [172]
28+7 ppm 36-42 km, [87]
171 ppm 12 km, [149]
45 ppm 35-45 km, [19]

He 12%,ppm  Outgassing (U, Th) - [213]

Ne 7+3 ppm Outgassing, primordial ~ --- [213]

H,S* 342 ppm Outgassing (FeS, ) Conversion to SO, <20 km, [102]

HDO® 1.320.2 ppm Outgassing H escape sub-cloud, [51]

HCl  0.6+0.12 ppm Outgassing Cl mineral formation cloud top, [39]
0.4 ppm cloud top, [56]
0.5 ppm 35-45 km, [19]

COS* 0.3 ppm Outgassing (FeS, ) Conversion to SO,  35-45 km, [19]

Kr ~25 ppb Outgassing, primordial  --- [61]

SO*  20+10 ppb Photochemistry Photochemistry cloud top, [154]

S, 20ppb Outgassing Conversion to SO, <50 km, [152]

HF 5%, 5ppb Outgassing F mineral formation cloud top, [39]
4.5 ppb 35-45 km, [19]

Xe ~1.9 ppb QOutgassing, primordial  --- [59,174]

*Abundances of these species are altitude dependent. See [213] and [77] for detailed information.

327
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TABLE 4. Isotopic Composition of the Atmosphere of Venus®

Isotopic Ratio Observed Value

Notes & References

D/H 1.6£0.2 %
1.9+0.6 %
2C/BC 86+12
88.3x1.6
NN 273+56
*0/"*0 500425
500+80
¥Ne/*Ne 11.8+0.7
BCIACl 2.9+0.3
AT/ Ar 5.56+0.62
5.08+0.05
CAr/Ar 1.03+0.04
1.19+0.07

Pioneer Venus MS® [62]
IR spectroscopy [51]

IR spectroscopy [18]
Venera 11/12 MS [110]
Pioneer Venus MS [101]
Pioneer Venus MS [102]
IR spectroscopy [18]
Pioneer Venus MS [59]
IR spectroscopy [39,219]
Pioneer Venus MS [59]
Venera 11/12 MS [110]
Pioneer Venus MS [102]
Venera 11/12 MS [110]

*No isotopic compositions are available for Kr and Xe on Venus.

®MS = Mass Spectrometer

gases, notably the oxides of Br, Cl, H, and N, which are in-
volved in the gas phase catalytic destruction of O, in the
stratosphere. These cycles are more rapid than the O, loss
in the Chapman cycle and are the dominant O, loss proc-
esses. The gas phase catalytic cycles involving oxides of
halogens are exemplified by the following reaction
sequence:

Cl+ 03 > ClO+ O,
ClO+0 - Cl+ (O,
0+03 —)202

The reactive halogens involved in these cycles come from
photochemical destruction of halocarbon gases, such as
CF,Cl, and CFCl;, which are anthropogenic emissions
transported upward into the stratosphere. As shown in Ta-
ble 5, the atmospheric concentrations of many halocarbon
gases are increasing at the rate of several percent a year.

The HO, and NO, catalytic cycles for O, destruction are
exemplified by the reaction sequences below:

OH+03 —)H02+02
HOz +03 —> OH+20,
O3+O3 —)302

03 +h\/-—)0+02

O+NO; - O+ NO
NO+ O3 > NO> + O,

03 +03 —)302

The major source of stratospheric OH is the reaction of
O('D) atoms with H,0, which is either transported from
the troposphere or produced via CH, oxidation in the
stratosphere. At present, the major source of stratospheric
NO, is N,O transported upward from the troposphere.

Recently (1985-1992) ozone depletions have been ob-
served to occur in the Antarctic stratosphere during south-
ern spring. These depletions are due to heterogeneous
reactions on the surfaces of polar stratospheric clouds
which convert relatively inert chlorine reservoir molecules
such as CIONO, and HCI into highly reactive species such
as HOCI, Cl,, and CINO,, which release Cl-bearing radi-
cals upon photolysis. These radicals then deplete ozone via
gas phase catalytic cycles such as those illustrated above.
The current status of ozone monitoring and of the apparent
decreases at different geographic locations is reviewed by
Stolarski et al [193].

The isotopic composition of the noble gases in the terres-
trial atmosphere and of terrestrial standards for isotopic
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TABLE 5. Chemical Composition of the Terrestrial Troposphere*®

329

Gas Abundance* Source(s) Sink(s) Notes & References
N, 78.084% Denitrifying bacteria Nitrogen fixing bacteria [214]
0O, 20.946% Photosynthesis Respiration & decay [214]}
H,O <4% Evaporation Condensation variable
Ar 9340 ppm  Outgassing (“K) - [173]
CO, 350 ppm Combustion, biology Biology Keeling et al 1984
Ne 18.18 ppm  Outgassing --- [173]
‘He 5.24 ppm Outgassing (U, Th) Escape [173]
CH, 1.7 ppm Biology & agriculture Reaction with OH +1%/yr, [70]
Kr 1.14 ppm Outgassing --- [173]
H, 0.55 ppm H,O Photolysis H atom escape [214]
N,O ~320 ppb Biology Photolysis (stratosphere) [214]
CO 125 ppb Photochemistry Photochemistry [214]
Xe 87 ppb Outgassing - [173]
O, ~10-100 ppb  Photochemistry Photochemistry [214]
HCI ~1 ppb Derived from sea salt Rainout [214]
Isoprene, etc.  ~1-3 ppb Foliar emissions Photooxidation [214]
C,H;,, etc ~3-80 ppb Combustion, biomass Photooxidation [214]
burning, grasslands
H,0, ~0.3-3 ppb  Photochemistry Photochemistry [187]
C,H,, etc ~0.2-3ppb  Combustion, biomass Photooxidation [214]
burning, oceans
C,H,, etc ~0.1-6 ppb  Combustion, biomass Photooxidation [214]
burning, oceans
C¢H, etc ~0.1-1 ppb  Anthropogenic Photooxidation [214]
NH, 0.1-3 ppb Biology Wet & dry deposition [214]
HNO, ~0.04-4 ppb  Photochemistry (NO,) Rainout [214]
CH,CI 612 ppt Ocean, biomass burning  Reaction with OH [176]
COS 500 ppt Biology Photodissociation [214]
NO, ~30-300 ppt Combustion, biology Photooxidation [214]
CF,CL (F12) 300 ppt Anthropogenic Photolysis (stratosphere) +5.1%/yr, [176]
CFCL (F11) 178 ppt Anthropogenic Photolysis (stratosphere) +5.1%/yr, [176]
CH,CCl, 157 ppt Anthropogenic Reaction with OH +4.4%/yr, [177]
CCl, 121 ppt Anthropogenic Photolysis (stratosphere) +1.3%l/yr, [176]
CF, (F14) 69 ppt Anthropogenic Photolysis (upper atm.) +2.0%l/yr, [176]
CHCIF, (F22) 59 ppt Anthropogenic Reaction with OH +10.9%/yr, [176]
H,S 30-100 ppt  Biology Photooxidation [214]
C,CLF, (F113) 30-40 ppt Anthropogenic Photolysis (stratosphere) +11.5%/yr, [176]
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TABLE 5. (continued).

Gas Abundance* Source(s) Sink(s) Notes & References

CH,Cl, 30 ppt Anthropogenic Reaction with OH [214]
CH,CICH,Cl 26 ppt Anthropogenic Reaction with OH [214]

CH,Br 22 ppt Ocean, marine biota Reaction with OH [214]

SO, 20-90 ppt Combustion Photooxidation marine air, [214]
CHCL 16 ppt Anthropogenic Reaction with OH [214]

Cs, ~15 ppt Anthropogenic Photooxidation [214]

C,CLF, (F114) 14 ppt Anthropogenic Photolysis (stratosphere) [214]

C,H,CI 12 ppt Anthropogenic Reaction with OH [214]

CHCICCI, 7.5 ppt Anthropogenic Reaction with OH [214]

(CH,),S 5-60 ppt Biology Photooxidation marine air, [214]
C,CIF, (F115) 4 ppt Anthropogenic Photolysis (stratosphere) [214]

C,F, (F116) 4 ppt Anthropogenic Photolysis (upper atm) [214]

CCIF, (F13) 3.3 ppt Anthropogenic Photolysis (stratosphere) [214]

CH;,l ~2 ppt Ocean, marine biota Photolysis (troposphere) [214]

CHCLF (F21) 1.6 ppt Anthropogenic Reaction with OH [214]

CCIF,Br 1.2 ppt Anthropogenic Photolysis (stratosphere) +20%/yr, [176]

*Abundances by volume in dry air

bAbbreviations: ppm = parts per million, ppb = parts per billion, ppt = parts per trillion
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Fig. 3. Vertical concentration profiles for important minor and trace gases in the terrestrial stratosphere.
Note the two different concentration scales. The total number density at 10 km altitude is 10'*° and the
total number density at 50 km altitude is 10'**. From Turco (1985).
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TABLE 6. Isotopic Composition of the Noble Gases in the Terrestrial Atmosphere and of
Terrestrial Standards for Isotopic Analyses

Isotopic Ratio Observed Value Notes & References
D/H (1.5576+0.0005) x 10™* SMOW [96]
*He/*He (1.399+0.013) x 10° [148]

2C/3C 89.01+0.38 [104]

“N/PN 272.0+0.3 air [113]
'%0/0 2681.80+1.72 SMOW [104]
0/"*0 498.71+0.25 SMOW [104]
Ne/**Ne 9.800+0.080 {69]
¥'Ne/”Ne (2.899+0.025) x 10? [69]

BCYPCl 3.1273+0.1990 [104]

A/ Ar 5.320+0.002 [155]
“Ar/*Ar 296.0+0.5 [155]
Kr/*Kr (6.087+0.002) x 10° [9]

SKr/*Kr 3.960+0.002 % [9]

Kr/*Kr 20.217+0.021 % [9]

PKr/*Kr 20.136+0.021 % [9]

SKr/MKr 30.524+0.025 % [9]
Xe/Xe (3.537+£0.0011) x 10~ [173]

"%/ Xe (3.300+0.017) x 107 [173]

Xe/ "X e 7.136+0.009 % [173]
PXe/Xe 98.32+0.12 % [173]

P0Xe/ M Xe 15.136+0.012 % [173]
PXe/PXe 78.90+0.11 % [173]
BXe/Xe 38.79+0.06 % [173]
P¥Xe/?Xe 32.94+0.04 % [173]

analysis are listed in Table 6. Atmospheric N, is the stan-
dard for nitrogen isotopes, but H, C, and O gases in the ter-
restrial atmosphere are isotopically fractionated relative to
the standard isotopic ratios. Atmospheric O, is enriched in
B0 relative to SMOW, an effect which is believed to be
due to biological activity. This is a mass fractionation ef-
fect. However, siratospheric O, is more enriched in G,

than expected for mass fractionation. The exact nature of
the enrichment (e.g., the symmetric or asymmetric form of
'®0'*0,) and its cause are currently debated [89,117]. The
isotopic composition of the terrestrial atmosphere and pos-
sible mechanisms for explaining the observed fractiona-
tions are reviewed by Kaye [117]. The systematics of

stable isotopes in precipitation are reviewed by Dansgaard
[50].

2.4 Mars
Table 7 summarizes the chemical composition of the Mar-
tian atmosphere and the probable sources and sinks of the

acA PR ST SRy Sy

gases in it. Carbon dioxide, the dominant atmospheric con-
stituent, annually condenses into and resublimes from the
Martian polar caps. This process produces a global pres-
sure change of about 37% relative to the global mean pres-
sure of 6.36 mbars. As a consequence the mixing ratios,
but not the column densities of the non-condensible gases
are seasonally variable. The abundances of two other con-
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TABLE 7. Chemical Composition of the Atmosphere of Mars®

Gas Abundance Source(s) Sink(s) Notes & References

CO, 95.32% Outgassing & evaporation Condensation  [124,168]

N, 27% Outgassing Escape as N {168]

Ar  1.6% Outgassing (“’K) --- [168]

0, 0.13% CO, Photolysis Photoreduction [6,32,205]

CO 0.08% CO, Photolysis Photooxidation [35,114,115]

H,0" ~210 ppm Evaporation & desorption Condensation & [112,116]
adsorption

NO ~100 ppm Photochemistry (N,, CO,) Photochemistry 120 km, [156]

Ne 2.5 ppm Outgassing, primordial -- [168]

HDO 0.85+0.02 ppm  Evaporation & desorption Condensation & [27,170]
adsorption

Kr 0.3 ppm Outgassing, primordial - {168]

Xe 0.08 ppm Outgassing, primordial - [168]

0,° ~(0.04-0.2) ppm Photochemistry (CO,)

Photochemistry [7,8]

*The mixing ratios, but not the column densities of non-condensible gases are seasonally
variable due to the annual condensation and sublimation of CO,.

®Spatially & temporally variable.

stituents, water vapor and O, are also observed to be vari-
able. The average water vapor abundance observed by the
Viking Mars Atmospheric Water Vapor Detector
(MAWD) experiment is about 15 precipitable (ppt) um
(~210 ppm). The maximum observed value was about 90
ppt um, and the lowest observed value was below the de-
tection limit of 1 ppt um [112]. Recent Earth-based
microwave observations of the 1.35 cm water line gave a
global average water vapor abundance of only 31 ppt um
during the 1990 northern winter [34]. This is about a factor
of two lower that the Viking MAWD data during the

1977-78 northern winter. The O, abundance is highly vari-
able. Ozone is present in cold and dry atmospheric regions,
such as those found over the winter polar caps. It is absent
in warmer, wetter regions, such as those over the polar
caps in the summer [7]. The implications of the observed
CO, 0,, and O, abundances for models of Martian atmos-
pheric photochemistry are reviewed by Barth [7] and
Lewis and Prinn {134].

Table 8 summarizes the isotopic composition of the Mar-
tian atmosphere. Only the C/"°C ratio is terrestrial within
measurement uncertainties. The observed D/H ratio is
about S times higher than the terrestrial value as defined by
SMOW. Mechanisms for producing the enhanced D/H ra-

tio are discussed by Yung et al [221] and Jakosky [111]).

The "“N/"N ratio is about 62% of the terrestrial value.
Nonthermal escape processes which may have enriched
N on Mars have been discussed in several papers by Fox
and Dalgarno (e.g., [82,83]). Earth-based IR spectroscopic
measurements of the oxygen isotopic composition of Mar-
tian water vapor [27] show that the '*0/"’O ratio is Earth-
like but that the '*O/'*0 ratio is about 9% larger. A prior
measurement of the '°O/'*0 ratio in Martian CO, gave a
value identical, within the uncertainties, to that in SMOW
[156]. In contrast to Venus where *Ar is depleted relative
to the Earth, the “°’Ar/*°Ar ratio on Mars is about 10 times
larger than the terrestrial value. The Martian '*Xe/"”*Xe ra-
tio has also been measured and is about 2.5 times larger
than the terrestrial value. Again, the reader is referred to
Pepin [174] and Lewis and Prinn [134] for the implications
of the noble gas isotopic data for the origin and evolution
of the Martian atmosphere.

2.5 The Jovian Planets: Jupit
Neptune

Compositional data for these four planets are summarized
in Tables 9-11. Observed isotopic ratios are presented in
Table 12. Their atmospheres are predominantly H, + He
with minor amounts of all other gases. Schematic P,T pro-
files for the upper atmospheres of the Jovian planets are il-
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TABLE 8. Isotopic Composition of the Atmosphere of Mars®

Isotopic Observed Value Notes & References
Ratio
D/H (94) x 10 IR spectroscopy, [170]
(7.8£0.3) x 10* IR spectroscopy, [27]
C/BC 90+5 Viking MS, [156]
“N/PN 170+15 Viking MS, [156]
*0/0 2655425 IR spectroscopy, [27]
*Q/"*0 490425 Viking MS, [156]
545+20 IR spectroscopy, [27]
SSAr/*Ar 5.5+1.5 Viking MS, [22]
©Ar/Ar 3000+500 Viking MS, [168]

12950 132 0 2-5+2-1

Viking MS, [168]

*[sotopic compositions inferred from measurements on different SNC meteorites are tabulated by
[174]. However, only direct observations of the isotopic composition of the Martian atmosphere are

listed here.

lustrated in Figure 2. These profiles are derived from radio
wavelength observations by the Voyager spacecraft
[135,136,138,139], which extend down to a few bars pres-
sure. Observational data and theoretical models of the
planetary interiors indicate that the atmospheric P,T pro-
files are adiabatic below the tropopause levels, which typi-
cally occur at 100 mb pressure.

The data in Tables 9-11 illustrate several important
points. The observed He/H, ratios vary from planet to
planet. The.solar He/H, ratio (~13.6% atomic or ~27% by
mass) is difficult to determine by direct observations of the
Sun. Despite this uncertainty, He is clearly depleted in the
atmosphere of Saturn, and may also be slightly depleted in
the Jovian atmosphere. In contrast, Uranus apparently has
a solar He/H, ratio and Neptune may have a He enrichment
relative to the solar ratio. The compositional data also
show that the elemental compositions of the atmospheres
of Jupiter and Saturn are close to solar composition. How-
ever, both planets are slightly enriched in elements heavier
than He. The apparent depletion of water vapor on Jupiter
may be an exception to this trend or more plausibly, may
be due to meteorological effects. The observations of the

ratin ~m T Teanig an A Nentiine an har ma
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densities of these two planets indicate that they have sub-
stantial heavy element enrichments.

The Earth-based and spacecraft spectroscopic observa-
tions show a wealth of species in the atmospheres of Jupi-
ter and Saturn. Some of these, such as hydrocarbons, are
produced by the photochemical destruction of CH, while

others, such as CO, PH,, GeH,, and AsH,, are mixed up-
ward from the hot, deep atmospheres of these two planets.
Isotopically substituted species such as HD, CH,D, “CH,,
and "NH, are also observed. The D/H ratio on Jupiter and
Saturn is about 2 x 10° and is similar to the primordial
D/H ratio estimated from noble gases in meteorites [2].
The '*)C/**C ratio obtained by Earth-based and spacecraft
observations of CH,, C,H,, and C,H, ranges from 20-160.
The reasons for this large range are unclear. However, an
emerging consensus is that Jupiter has an Earth-like carbon
isotope ratio. The “N/N ratio determined from observa-
tions of NH;, is poorly constrained; the most recent obser-
vations apparently indicate a value only about half the
terrestrial ratio. Less compositional diversity is observed
on Uranus and Neptune, presumably because the observ-
able regions of their atmospheres are substantially colder
than the observable regions of the Jovian and Saturnian
atmospheres.

2.6 Titan
Titan is the largest satellite of Saturn and possesses the

most massive atmosphere of any satellite in the solar sys-

tem. The chemical composition of its atmosphere is sum-

marized in Table 13. The abundances of the major
atmospheric constituents N,, CH,, and Ar are indirectly in-
ferred from Voyager IRIS and radio occultation data that
constrain the mean molecular weight of the atmosphere.
The direct spectroscopic detection of N, at high altitudes
by the Voyager UVS and of CH, by the Voyager IRIS do
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TABLE 9. Chemical Composition of the Atmosphere of Jupiter

Gas Abundance Comments References

H, 89.8+2.0 % Voyager IRIS & radio occultation result, [36,41,52,53,72,86,
many studies of the H, pressure-induced  181,202]
dipole and quadrupole lines and the ortho-
para ratio

He 10.2+2.0 % Voyager IRIS & radio occultation [41,86]

CH, (3.0£1.0) x 10°  abundance ~4 x solar C/H, ratio [92], CH, [25,72,84,181,185]
photolyzed to hydrocarbons in
stratosphere

NH, (2.6+0.4) x 10* abundance ~ solar N/H, ratio [91], NH, [25,57,126,181,185,
undergoes condensation & photolysis in ~ 218]
the upper troposphere & stratosphere

HD 28"°, ppm reevaluation for HD by [190] [72,151,190,206,207]

B“CH, 33 ppm for '2C/"*C ~ 90, Voyager data give ~ 160, [38,45]
but all other values are ~ 90

H,0 30+20 ppm refers to 6 bar level, drops to 41 ppm at  [25,26,126,131]
2-4 bar range, apparently depleted below
solar O/H, ratio, see text

C,H, 5.8£1.5 ppm abundance from [162], C,H, is due to CH, [37,119,120,123,162,
photolysis in stratosphere, abundance var- 180,181,197-199]
ies with altitude and latitude

“NH, ~2ppm "N/ N ~ 125 from [64] [64,73,198]

PH, 0.7+£0.1 ppm due to vertical mixing from deep atmos-  [25,65,67,126,130,
phere, photolyzed in stratosphere 181]

C,H, 0.11£0.03 ppm  abundance of [162], C,H, is due to CH, [37,63,119,162,165,
photolysis in stratosphere, abundance var- 180,181,197,199]
ies with altitude and latitude

CH,D  0.20+0.04 ppm formed by D/H exchange of CH, + HD in [11,12,25,65,126]
the deep atmosphere

B“CCH; ~ 58 ppb for ?C/"C ~ 94 as reported [215]

BCCH, ~10ppb for C,H,/*CCH, ~ 10 as reported [66]

C,H, 743 ppb in N. polar auroral zone, 0.4 ppb in equa- [119,121]
torial region

CH,C,H 2.5, ppb in N. polar auroral zone {119]

HCN 2%, ppb due to vertical mixing from deep atmos-  [195]
phere or photochemistry

C.H, 2" ppb in N. polar auroral zone [119]

CcO 1.6+0.3 ppb due to vertical mixing from deep [10,13,25,129, 161]
atmosphere

GeH, 0.7, ppb due to vertical mixing from deep atmos-  [25, 65,81,126]
phere, destroyed in stratosphere

C,H, 0.3+0.2 ppb midlatitude region [88]
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TABLE 9. (continued).

Gas Abundance Comments References
AsH; 0.22+0.11 ppb  due to vertical mixing from deep atmos-  [158,163]
phere, destroyed in stratosphere

H;" - in auroral regions [23,68]

C,H, <0.6 ppm in N. polar auroral zone {119]

H,S <40 ppb upper limit from IR spectroscopy [127]

TABLE 10. Chemical Composition of the Atmosphere of Saturn®

Gas  Abundance Comments References

H, 96.3+2.4 % abundance from Voyager IRIS & radio occulta-  [30,36,41,52,53,
tion results, many spectroscopic studies of the 202}
pressure-induced dipole and quadrupole lines of
H,, and the ortho-para ratio

He 325424 % Voyager IRIS & radio occultation [41]

CH, 4.5%,,x10° abundance from Voyager IRIS is ~6 x solar C/H, [38,44,79,178]
ratio [92], CH, is photolyzed to hydrocarbons in
stratosphere

NH; (0.5-2.0) x 10" abundance from Voyager IRIS is ~(0.2-1.0) x so- [44,57,80,178,
lar N/H, ratio[91], NH, undergoes condensation & 189,218]
photolysis in the upper troposphere &
stratosphere

HD  110£58 ppm discovered on Saturn by[207] [144]

“CH, ~51 ppm 2C/”C ~ 89 [38]

C,Hy 7.0+1.5 ppm abundance of [162], C,Hy is due to CH, photoly- [24,44,162,196,
sis in stratosphere, abundance varies with altitude 217]
and latitude

PH; 1.4+0.8 ppm  due to vertical mixing from deep atmosphere, [44,128,157,178]
photolyzed in stratosphere

CH;D 0.39+0.25 ppm formed by D/H exchange of CH, + HD in the [44,78,157]
deep atmosphere

C;H, 0.30+0.10 ppm due to CH, photolysis in stratosphere [44,162]

AsH, 3+1 ppb due to vertical mixing from deep atmosphere, de- [20,157,163]
stroyed in stratosphere

CO  1.0+£0.3 ppb due to vertical mixing from deep atmosphere, de- [157,159]
stroyed in upper atmosphere

GeH, 0.4+0.4 ppb due to vertical mixing from deep atmosphere, de- [20,157,160]
stroyed in stratosphere

CH, --- tentative detection, no abundance given [97]

CH; --- tentative detection, no abundance given [971

H,S* <0.2 ppm upper limit of 1 cm amagat [171}

335
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TABLE 10. (continued).

Gas  Abundance Comments References
H,0° <0.02 ppm upper limit of 15 ppt um [128]
HCN® <4 ppb upper limit of 0.025 cm amagat [195]
SiH,° <4 ppb upper limit of 0.025 cm amagat [128]

“Definitions: 1 ppt pm = 10* g cm™ = 0.124 cm amagat. 1 amagat = 2.69 x 10" molecules cm™.

*Converted to a mixing ratio using a H, column abundance of 70 km amagat from [201 ].

TABLE 11. Chemical Composition of the Atmospheres of Uranus and Neptune

Gas

Uranus

Neptune

Comments

References

He
CH,

HD

CH,D

C.He

CH,

H,S*

NH,?

~82.5£3.3% ~80+3.2 %

15.243.3 %
~23%

~148 ppm

~8.3 ppm

~1-20 ppb

~10 ppb

<0.8 ppm

<100 ppb

19.0£3.2 %
~1-2 %

~192 ppm

~12 ppm

1.5"% 5 ppm

60“40.40 ppb
<3 ppm

<600 ppb

Voyager IRIS & radio occultation,
by difference from sum of He +
CH,, many studies of the pressure-
induced dipole & quadrupole lines
and the ortho-para ratio

Voyager IRIS & radio occultation

Uranus & Neptune CH, ~32 &
~14-28 x solar C/H, ratio [92], re-
spectively, abundances from Voy-
ager radio occultation data on lapse
rate, abundance from vis/IR spec-
troscopy is 1-10 %

based on D/H ~ 9 x 107 for Uranus
and D/H ~ 1.2 x 10** for Neptune,
no reliable observations of HD
lines on these planets according
to[191]

based on CH,D/CH, = 3.67¢, x
10*[54] and 2.3 % CH, for Uranus
and CH,D/CH, = 6*, x 10* [54],
and 2 % CH, for Neptune

due to CH, photolysis, abundance
varies with height & latitude, Ura-
nus abundance from Voyager is a
few times 10°®

due to CH, photolysis, abundance
varies with height & latitude

upper limits of 30 and 100 cm ama-
gat on Uranus & Neptune

upper limit of 5 cm amagat on Ura-
nus from IR spectroscopy, abun-
dance varies with height and
latitude and is larger at lower lev-

[5,16,36,42,43,
79,188,203]

[42, 43)

[4,5,7,15,138,
139,142,145]

[36,144,191,204]

[17,54]

[3,21,100,122,
166,167]

[3,21,31,100,143,
166,167]

[79]

[58,79,93,94,103,
139]
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TABLE 11. (continued).

Gas

Uranus Neptune Comments References

CO

CH,CN
HCN

HC,N

els, extensive microwave studies,
Voyager radio occultation upper
limit at 6 bar level on Neptune

<40 ppb 0.65+£0.35 ppm Uranus upper limit for stratosphere, [150,183]
present in troposphere & strato-
sphere of Neptune, abundances of
Rosengqvist et al 1992

- <5 ppb in stratosphere [183]

<15 ppb 0.3+0.15 ppb  in stratosphere, abundances of Ro- [150,183]
senqvist et al 1992

<0.8 ppb <0.4 ppb in stratosphere [183]

*Converted to a mixing ratio using a H, column abundance of 400 km amagat from {79].

TABLE 12. Isotopic Ratios in the Atmospheres of the Outer Planets

Isotopic Ratio Jupiter Saturn Uranus Neptune Notes
D/H (2.6+1.0) x 10°  (1.7£1.0) x 10°  9.0%°,; x 10° 1.272 4 x 10% a
zc/hC 94+12 897 1 b
14N/15N 125+]45_75 c

*D/H for Jupiter & Saturn from [76]; D/H for Uranus and Neptune from [17,54].

*The '2C/**C for Jupiter is from *C-ethane [215], other reported values for methane are 110+35, 70" 15, 89", and 160",

[38,45] and 20", [66] for C,H,. No data are available for Uranus & Neptune as of the time of writing (6/92).

°The “N/"*N for Jupiter is from [64], earlier work by [73,198] gave “N/"°N ~ terrestrial, within about a factor of 2. No data
are available for Saturn, Uranus & Neptune as of the time of writing (6/92).

TABLE 13. Chemical Composition of the Atmosphere of Titan

Gas

Abundance  Comments References

65-98 % Abundance indirectly inferred from [74,109,137]
Voyager IRIS & radio occultation
data that constrain mean mol. wt. of
atmosphere, directly detected by
Voyager UVS in upper atmosphere

<25% Upper limit from deduced mean [28,109]
mol. wt. of atmosphere, UVS data
show Ar/N, <6 % at 3900 km

2-10% Indirectly inferred from Voyager [74,97,137]
IRIS & radio occultation data, about
2% at tropopause

0.2% Directly measured by Voyager IRIS, [109,200]
detected by Trafton 1972
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TABLE 13. (continued).

Gas Abundance  Comments References

CO 60-150 ppm  From Earth-based IR spectroscopy  [109,141]

CH,D 110 ¢, ppm  Voyager IRIS measurements, gives  [47,55,118,169]
D/H=1.5",,x 10"

C,H, 13-20 ppm Voyager IRIS measurements, uni- [46,48,97,125]
formly mixed over disk

C;H, 0.5-4 ppm Voyager IRIS measurements, uni- [46,48,109]
formly mixed over disk

C,H, 2-5 ppm Voyager IRIS measurements, uni- [46,48,97,125]
formly mixed over disk

C,H, 0.09-3 ppm  Voyager IRIS measurements, [46,48,97,125]
polar/equatorial ratio ~30

HCN 0.2-2 ppm Voyager IRIS measurements & [46,48,125,194]
Earth-based mm wavelength obser-
vations, polar/equatorial ratio <2
from Coustenis et al 1991

HC,N 80-250 ppb  Voyager IRIS measurements, abun-  [46,48]
dances in N. polar region, no detec-
tion in equatorial region

CH,C,H 4-60 ppb Voyager IRIS measurements, [46,48,125,147]
polar/equatorial ratio ~2-5

CH, 1-40 ppb Voyager IRIS measurements, [ 46,48,125]
polar/equatorial ratio ~16

C,N, 5-16 ppb Voyager IRIS measurements, abun-  [46,48]
dances in N. polar region, no detec-
tion in equatorial region

CO, 1.5-14 ppb Voyager IRIS measurements, [46,48,109]

polar/equatorial ratio ~0.5

not provide constraints on their abundances in the lower at-
mosphere. Implications of the observed abundances for
origin and evolution of Titan's atmosphere and for
atmospheric photochemistry are reviewed by Hunten et al
[109] and Yung et al [220].

2.7 Triton

Voyager observations of Triton during the August 1989
Neptune encounter showed that it has a thin atmosphere
predominantly composed of N, containing about 100 ppm
of CH, at the surface [29,211]. Voyager UVS data give an
upper limit of about 1% for the CO/N, ratio in Triton's at-
mosphere. The observed surface temperature and pressure
are 38+4 K and 163 pbars. Its low surface temperature
makes Triton the coldest natural body in the solar system.

2.8 Pluto

The discovery of CH, absorption features in spectra of
Pluto provided the first inconclusive evidence for an at-
mosphere. This was finally confirmed by stellar occulta-
tion observations made by several groups in 1988
[71,107]. The occultation data constrain the ratio of the
temperature to the mean molecular weight, and thus de-
rived atmospheric compositions are model dependent. In
addition to CH,, other plausible constituents are CO and/or
N,. Atmospheric models based on the occultation data are
discussed in the papers cited above.
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