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The thermochemistry of several hundred compounds of twelve selected trace elements (Ge,
Se, Ga, As, Te, Pb, Sn, Cd, Sb, Tl, In, and Bi) has been investigated for solar composition
material along a Jupiter adiabat. The results indicate that AsF;, InBr, TII, and SbS, in addi-
tion to CO, PH;, GeH,, AsH;, HaSe, HCIL, HF, and H;BO; proposed by Barshay and Lewis
(1978), may be potential chemical tracers of atmospherie dynamics. The reported observa-
tion of GeHy is interpreted on the basis of new calculations as implying rapid vertical transport
from levels where 7' > 800°K. Upper limits are also set on the abundances of many gaseous

compounds of the elements investigated.

INTRODUCTION

The spectroscopic observations of PHs,
CO, and possibly GeH, in Jupiter’s atmo-
sphere (Ridgway, 1974; Ridgway et al.,
1976; Beer, 1975; Larson et al., 1977;
Larson et al., 1978 ; Beer and Taylor, 1978;
and Fink et al., 1978) have opened up a
new arca of research dealing with the use of
chemical species as tracers of atmospherie
motions. The presence of PH; and possibly
GeH, is attributed to rapid vertical trans-
port of these high-temperature, high-pres-
sure species to cool levels in the atmosphere,
a process which is faster than the reactions
which destroy these gases in the hot lower
atmosphere. Prinn and Barshay (1977)
have presented a quantitative treatment
of the rapid transport model for CO which
indicates that the vertical mixing rates pre-
viously estimated from heat flux considera-
tions are rapid enough to quench the re-
duction of CO and make it observable.
However, the observed differences in the
CO rotational temperature (Beer and
Taylor, 1978; Larson et al., 1978) indicate

that a stratospheric CO source such as
meteoritic infall (Prather et al., 1978) may
also be required. It will be difficult if not im-
possible to assess the relative magnitudes of
different proposed CO sources until data on
the vertical distribution profile of CO in the
Jovian atmosphere 1s obtained from a Jupi-
ter entry probe such as Galileo.

The considerations outlined above and
the somewhat distressing fact that kinetie
data appcear to be lacking for the relevant
PH; oxidation reaction which has been
postulated to destroy PHj; in the Jovian
atmosphere (Lewis, 1969 ; Prinn and Lewis,
1975) have led us to initiate this study. We
have investigated in detail the thermo-
chemistry of 12 selected moderately volatile
elements (Ge, Se, Ga, As, Te, Pb, Sn, Cd,
Sh, T1, In, and Bi) along a nominal Jovian
adiabat in order to suggest possible chemi-
cal tracers in addition to those already
proposed by Barshay and Lewis (1978).
Seven of these elements have not been
previously studied, and five were investi-
gated by Barshay and Lewis (1978) but

166

0019-1035/79/050166-14$02.00,/0
Copyright © 1979 by Academic Press, Inc.
All rights of reproduction in any form reserved.



JOVIAN CHEMISTRY

TABLE 1

AssUMED ELEMENTAL ABUNDANCES
FROM CAMERON (1973)

Element Abundance Figure No.
H 31.8 X 10°
O 21.5 X 108
N 3.74 X 108
S 500 X 103
P 9600
Cl 5700
F 2450
Ge 115 1
Se 67.2 1,3,4,6
Ga 48 2
Br 13.5
As 6.6 2
Te 6.42 1,34, 5
Pb 4 3
Sn 3.6 4
Cd 1.48 3
I 1.09
Sb 0.316 5
Tl 0.192 5
In 0.189 4
Bi 0.143 6

are studied in substantially more detail
here. Although the basic reasoning behind
this approach has been discussed in detail
by Barshay and Lewis (1978), we will
briefly recapitulate it here.

The utility of equilibrium calculations
rests on the assumption that rapid vertical
transport of atmospheric gases from the
deep lower atmosphere quenches all gas
phase reactions thereby freezing in the
high-pressure, high-temperature equilib-
rium configuration. Using our results it
then becomes possible to interpret observed
abundances of high-pressure, high-tempera-
ture species, e.g., GeHy, in terms of rapid
vertical transport from specific atmospheric
levels and to suggest other possible tracers
of atmospheric dynamics. In addition to
suggesting possible tracers the present
results are also used to place reasonably
firm upper limits on the abundances of
many gases, to describe the stability fields
of condensates, and to list compounds which

167

will not be detectable with significant
concentration.

PROCEDURE

The construction of the nominal adiabat
used in this study and the general calcula-
tional method used have been described in
detail by Barshay and Lewis (1978) and
will not be discussed here. The eclements
studied, their assumed abundances in a
solar composition gas (Cameron, 1973),
and the figure number (or numbers) in
which they appear are listed in Table I.

The thermodynamic data used in the
present calculations came from approxi-
mately 100 sources which are listed in Ap-
pendix II. In many cases the equilibrium
constant for formation of an element or
compound from the constituent elements in
their designated reference states had to be
calculated from the literature data. If at
all possible this calculation was done by a
third-law method and double-checked using
data from a separate source. In some cases,
a second-law method which is less accurate
was used and the results were still double-
checked with data from a separate source.
Details of the second- and third-law treat-
ments of equilibrium data are available in
the JANAF tables or any standard thermo-
dynamic text.

RESULTS

The results of the calculations are dis-
cussed element by element in order of de-
creasing abundance. Compounds which do
not appear in the figures due to extremely
low abundances or activities less than 1 are
listed in Appendix I.

Germantum. The calculated equilibrium
abundances of germanium-bearing gases
and the stability fields of germanium con-
densates are displayed in Fig. 1. These
results, which differ from those of Barshay
and Lewis (1978), illustrate several im-
portant points. First, at temperatures less
than 1000°K the major gas phase species
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Fic. 1. Equilibrium abundances of germanium-bearing gases and stability fields of germanium
condensates along the Jupiter adiabat. The temperature scale is linear in 1/T. The mole fraction
X of a species ¢ is defined as its partial pressure p; divided by the total pressure P. The heavy
lines which indicate the stability fields of the five condensates have nothing to do with their
abundances. The abundances of the different condensates may be estimated from the adundances
and rates of disappearance of the gases which constitute them. Notice that solid GeTe and GeSe
are always stable once they appear but that Ge(s) becomes unstable relative to GeS(s) which in

turn is replaced by GeQO,(s).

arc the germanium chalcogenides (GeS,
GeSe, and GeTe) and GeH,. Germane is at
best only the second most abundant Ge-
bearing gas, and is the third most abundant
gas over a wide temperature range. Di-
germane (Ge,Hg) is seen to be negligible at
all temperatures less than 1000°K along
the adiabat.

Second, the condensates are Ge(s),
GeTe(s), GeSe(s), GeS(s), and GeO,(s).
Solid GeO does not condense as previously
indicated because the thermodynamic data
source used by Barshay and Lewis (1978)
for GeO(s) (Dean, 1973) is incorrect (the
tabulated AG°, AH;°, and S° values at
298.15°K do not satisfy the relation AG®
= AH° — TAS®). This error coupled with

the inclusion of the important chalcogenide
compounds GeSe and GeTe into the data
set accounts for the differences between the
results.

The reported observation of GeH; with
a mole fraction about 6 X 10~ (Fink et al.,
1978) is seen from Fig. 1 to imply rapid
vertical transport of GeH,; from the
T > 800°K level. At this level there is ap-
proximately 10 times as much GeS as
GeH, and about an equal amount of GeSe.
However, since the condensation of GeS(g)
and GeSe(g) is probably faster than the
conversion of GeH, to either of these two
gases, GeH; may be the most abundant Ge
bearing gas at temperatures lower than
T ~ 520°K if equilibrium is not exactly
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Fic. 2. Equilibrium abundances of arsenic- and gallium-bearing compounds along the Jovian
adiabat. AsF; is the dominant arsenic-bearing gas at low temperatures. The stability of this gas
inhibits the condensation of solid arsenic. The abundances of all gallium-containing gases are
rapidly reduced by the appearance of solid GaS at about 970°K. Less than 19 of all gallium is

still in the gas phase 100°K below this point.

attained. Because of direct condensation of
GeS and GeSe, we do not include them on
our list of potential tracers.

Selentum. The results of the calculations
on sclenium-bearing gases and condensates
are presented in Figs. 1, 3, 4, and 6.
Hydrogen selenide is the most abundant
sclenium bearing gas at temperatures less
than 1000°K, with GeSe being the second
most abundant selenium gas. Condensation
of GeSe(s) at T' ~ 520°K severely depletes
the abundance of H.Se(g).

The low temperature condensation of
H,Se(g) as solid ammonium hydroselenide
(NHHSe) has also been studied. If equilib-
rium is not attained at 7 ~ 500°K, H,Se
may be present at essentially solar abun-
dance (Xu,se ~ 3.7 X 107°) until NH,HSe
condensation occurs at 7' ~ 219°K. As the
H,Se abundance decreases the condensa-
tion of NH,HSe is delayed until lower
temperatures and higher altitudes.

The photolysis of HySe in the Jovian
upper atmosphere has also been briefly in-
vestigated in connection with the possible
depletion of H,Se in the upper atmosphere.
The results of calculations made using
H,Se absorption coefficients from Goodeve
and Stein (1931), the radiative transfer
model of Prinn (1970), and solar flux data
from Schultz and Holland (1963) are pre-
sented in Fig. 7. Although the results are
only approximate they indicate that rapid
photolysis of HySe around the 200 to 250°K
region will deplete the gas on the time scale
of 2 days to 2 weeks. Thus, even if equilib-
rium is not attained in the lower atmo-
sphere, H,Se may still be unobservable due
to depletion by NH,HSe condensation and
solar uv photolysis. Thus in several ways
H,Se behaves similarly to H,S.

Gallium. The chemistry of gallium is il-
lustrated in Fig. 2. Lewis (1969) briefly
mentioned that gallium’s chemical behavior
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in the Jovian atmosphere at high tempera-
tures was unknown, although oxides and
gallium metal are involatile at 300°K. At
high temperatures (7' ~ 1000°K) Fig. 2
shows that gallium hydroxide is present at
solar abundance Xg,ox ~ 2.7 X 10~°. Con-
densation of solid GaS at T ~ 970°K
rapidly reduces the abundances of all Ga
bearing gases to less than 19, of the gallium
solar abundance within 100°K of its con-
densation temperature, and no Ga bearing
gas is expected to be observable.

Arsenic. Figure 2 also displays the rela-
tively simple gas phase chemistry of arsenic.
AsF;, which was not included in the cal-
culations of Barshay and Lewis (1978), is
seen to be the major As bearing gas at
T < 360°K if equilibrium is attained.

The large stability of AsF; also inhibits
arsenic precipitation, which may still occur
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if arsine is not converted to the trifluoride.
Low temperature calculations indicate that
AsF;(s) should saturate around the tropo-
pause. However, the presence of this con-
densate in Jupiter’s atmosphere must be
considered a moot topic until it is known
if the conversion of arsine to the trifluoride
occurs readily.

Tellurium. The equilibrium chemistry of
tellurium is displayed in Figs. 1, 3-5. Al-
though tellurium has been investigated by
Barshay and Lewis (1978), their results are
incorrect because of incorrect data on the
thermodynamic functions of H,Te(g) from
Rossini et al. (1952). The AH;° (298.15)
value from the compilation of Rossini and
co-workers does not agree with a more
recent determination (Gunn, 1964) which
makes H,Te(g) more stable with respect to
other Te-bearing gases. Thus, if the forma-
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Fie. 3. Equilibrium abundances of lead- and cadmium-bearing compounds along the Jupiter
adiabat. The chemistry of lead contains one of the few instances where a liquid condensate is
stable. Lead telluride is more stable then solid lead which never condenses. Plumbane (PbH,) is
seen to be very unstable. The condensation of solid CdTe and later solid CdS dramatically reduces
the Cd (g) abundance. Thermodynamic data could not be found for any other cadmium-contain-
ing gases. Refer to Barshay and Lewis (1978) to relate the temperature scale to pressure and

depth scales.
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Fic. 4. Equilibrium abundances of tin-, indium-, and tellurium-bearing compounds along the
Jupiter adiabat. The major tin-containing gases are SnS and SnTe. Liquid tin condenses at about
770°K but becomes unstable relative to tin telluride at about 633°K. Tin sulfide is stable at
temperatures less than about 450°K. The dominant indium-bearing gases over a wide temperature
range are InBr and Inl. InCl is also important at high temperatures. The first stable indium
condensate is indium sesquisulfide which appears at about 406°K. The hydrogen telluride abun-
dance is decreased sequentially by the formation of PbTe(s), SnTe(s), CdTe(s), and GeTe(s).
Other tellurium-bearing gases are graphed in Figs. 1, 3, and 5.

tion of group IV tellurides (GeTe, SnTe,
PbTe) is excluded, H.Te is present at solar
abundance Xg,r. ~ 3.5 X 107 down to
T ~ 440°K where solid Te condenses. If
equilibrium is reached, the H,Te abundance
is reduced due to the successive condensa-
tion of PbTe(s), SnTe(s), CdTe(s), and
GeTe(s). Calculations on the low tempera-
ture stability of solid ammonium hydro-
telluride (NH4HTe) indicate that even at
Xu,re ~ 3.5 X 1071 the solid NH,HTe will
not condense until the 7' ~ 130°K level is
reached. Depending on the degree to which
equilibrium is achieved at higher tempera-
tures, NH;HTe may not be a stable con-
densate in the Jovian upper atmosphere.
Lead. The behavior of lead is illustrated
in Fig. 3. At equilibrium monatomic Pb and

PbTe are the major gases. Plumbane
(PbH,) is highly wunstable and never
achieves a mole fraction larger than 108 at
temperatures of 1000°K and lower. An in-
teresting feature of the equilibrium chemis-
try displayed is the stability of liquid Pb.
Solid Pb is unstable relative to PbTe(s) and
does not condense.

Tin. Figure 4 depicts the chemistry of
tin. The major gases are SnS and SnTe.
Stannane (SnH,) never reaches a mole
fraction greater than 1072 (~0.59, of the
Sn solar abundance) at temperatures of
1000°K and below. Analogous to Pb, liquid
Sn is stable over a narrow temperature
range, but solid Sn is never stable.

Cadmium. The chemistry of cadmium is
presented in Fig. 3. Monatomic Cd gas is
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the only Cd-bearing gas for which data are
available. Its abundance is depleted by
CdTe(s) condensation at 7T ~ 605°K
and then by CdS(s) condensation at
T ~ 440°K.

Antimony. Figure 5 presents the results
of calculations on Sb bearing gases and
condensates. Stibine (SbH;) and SbS which
have similar abundances and Sb, are the
major gases. Solid Sb condenses at
T ~ 600°K because Sb,Te;(s) is unstable
owing to the prior depletion of H,Te
by PbTe(s), SnTe(s), and CdTe(s)
condensation.

Thallium and indium. The equilibrium
chemistry of thallium and indium is dis-
played in Figs. 5 and 4, respectively.
In both cases at temperatures less than
T ~ 800°K the major gases are the mono-
chloride, monobromide, and monoiodide.
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In;S;(s) at T ~ 406°K, whereas thallium
condenses as the monoiodide TII(s) at
T ~ 390°K.

Bismuth. Figure 6 illustrates the be-
havior of bismuth along the adiabat. At
temperatures greater than approximately
550°K monatomic and diatomic bismuth
are the major gases, while Bil and BiBr
are the dominant Bi-bearing gases below
this temperature. Liquid Bi first condenses
at T ~ 680°K and solid Bi becomes un-
stable relative to Bi,S;(s) at T ~ 360°K.
Bismuthine (BiHj;) is seen to be very un-
stable and it never reaches a mole fraction
larger than 101 at 1000°K and below.

CONCLUSIONS

Potential chemical tracers of atmospheric
dynamics revealed by this study [excluding
those already mentioned by Barshay and

Indium condenses as the sesquisulfide Lewis (1978)] are AsF;, InBr, TII, and
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Fic. 5. Equilibrium abundances of thallium- and antimony-bearing compounds along the
Jupiter adiabat. Major thallium-containing gases are TII, TIBr, and TICl. Abundances of all
three gases drop when TII condenses at about 390°K. At high temperatures stibine (SbH;) and
SbS are the major antimony-bearing gases. As the temperature drops Sbs gas rapidly becomes
dominant. Antimony condenses at about 600°K and is always more stable than SbyTe; (s).
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F1a. 6. Equilibrium abundances of bismuth-bearing compounds and of hydrogen selenide along
the Jovian adiabat. Monatomic and diatomic bismuth are the major gases at high temperatures
and Bil and BiBr are the most abundant bismuth-containing gases at lower temperatures. Bismuth
condenses while it is still a liquid at about 680°K. At about 360°K Bi:S; becomes stable relative
to solid Bi. The abundance of H,Se is relatively constant until solid GeSe condenses at about
520°K. Other selenium-bearing compounds are graphed in Figs. 1, 3, and 4.

SbS. Although H.Se [proposed as a tracer
by Barshay and Lewis (1978)] and H,Te
are both present at solar abundances at
T ~ 1000°K, their depletion by the con-
densation of group IV selenides and tel-
lurides may render them unobservable.
Furthermore, additional considerations
such as the condensation of NH,HSe
around the 220°K level and rapid photolysis
of H,Se in the 200 to 250°K region may
also decrease the H,Se abundance and
make its observation above the NH; cloud
layer even more unlikely. Of course these
same considerations also mean that H,Se
is a potential tracer of dynamics both in the
deep atmosphere where selenide condensa-
tion occurs and also in the upper atmo-
sphere where solar uv photolysis is impor-
tant. Similar reasoning applies to H,Te
which is both highly photolabile (Goodeve

and Stein, 1931) and susceptible to tellu-
ride condensation in the lower atmosphere.

The reported observation of GeH, in
Jupiter’s atmosphere (Fink et al., 1978) can
be explained by the present calculations if
rapid mixing from the 7 ~ 800°K region
of the Jovian atmosphere occurs. This ex-
planation is in accord with the postulated
rapid vertical transport of PH; from the
T ~ 800-1000°K region and of CO from
the T' ~ 1100°K level of Jupiter’s atmo-
sphere (Barshay and Lewis, 1978; Prinn
and Barshay, 1977). A more precise ex-
planation of the presence of GeH; must
await confirmation of the observations and
an investigation of the kinetics of relevant
reactions.

Of the potential tracers identified in the
present study, three have mole fractions
close to 107!, Quenching of SbS from the
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Fic. 7. The lifetime of hydrogen selenide against
depletion by photolysis. Condensation of H,Se as
solid NHsHSe and rapid depletion of the H,Se gas
phase abundance by photolysis both occur in the
same region of the atmosphere around the 220°K
level. The graph was calculated assuming a solar
abundance of H;Se below this level (higher tempera-
tures), a HiSe abundance fixed by the vapor pres-
sure of NH HSe (s) above this level (lower tempera-
tures), and complete clearing of high-altitude cloud
cover (the Belts). Approximate dynamic mixing
times are indicated for K = 108 cm? sec™! (300°K
level), 10° (220°K), and 10* (140°K): Mixing prob-
ably cannot maintain a near-solar H,Se abundance
against photolysis above the about 250°K level.
Thus NH HSe condensation probably is limited to
regions of NH;(s) cloud cover (the Zones).

T ~ 700°K level could provide one such
tracer, while the abundances predicted for
InBr and TI near the 400°K level are
about 107" without the need for high-
temperature quenching. The abundance of
AsF; if it forms readily from AsH; can
reach a mole fraction of 3 X 10-1°. We feel
that the prospects for discovery of other
tracers of deep mixing beyond those
theoretically identified so far are not bright :
The approximately 700 compounds of the
34 elements which have now been studied
carefully include all the abundant and
volatile elements.

FEGLEY AND LEWIS

APPENDIX I

ApprrioNaL CompouNDps WHICH
ARE NoT GRAPHED

This Appendix lists compounds which
were investigated but not included in the
figures. Unstable condensates (liquids and
solids with less than unit activity) and
minor gases (mole fractions always less
than 10-1%) are listed only if they were not
already included in the list of unstable con-
densates and minor gases prepared by
Barshay and Lewis (1978).

Ge

GeO(s), GeS(l), GeTe(l), Ges(g),
GeF(g), GeFi(g), GeBr(g), GeBr,(l, g),
GesOs(g), GeClLi(l), Gels(s, g), Gel,(s),
GeSe(l).

Ga

Ga(s, 1), Ga:03(s), GaO(g), GaBrs(s, 1,
g), GaCls(s, 1, g), GaFi(s, g), GaSb(s),
Ga(OH)s(s), Gals(g), GaN(s), GaAs(s),
GasSes(s), GaSe(s), GaTe(s).

As

As(s), AsO(g), AsF(g), AsF(g), AsF;(g),
AsCl(g), AsCla(g), Asli(g), As.Ses(s),
AS2T€3(S).

Te
Te(s, 1).

Pb

Pb(s), Pba(g), PbF.(s, g), PbCly(s, |, g),
PbBry(s, 1, g), Pbly(s, 1, g), PbF.(g),
PbCli(g), PbO(s), PbO.(s), Pb;O4(s),
PbSiO;(s), Pb,SiO4(s), PbS(s), PbSe(s),
PbSO,(s), PbCO;(s).

Sn
Sn(s), SnBry(s, 1, g), SnCli(g), SnO(s),
SnO:(s), SnS:(s), SnSe(s), SnSe.(s),

SnCly(s), Snly(s, 1), Snl,(s).



JOVIAN CHEMISTRY

Cd

Cd(s, 1), CdO(s), CdCly(s), CdF(s),
Cd(OH)x(s), CdOHCI(s), CdSb(s, 1),
CdBra(s), Cdl.(s), CdSe(s), CdCOs(s),
CdSiOs(s).

Sb

Sb(l), SbO(g), SbiOs(g), SbBra(g),

SbgTCz(g), Sng3(S), Sb2Sea(s, 1), Sb2T(‘,3(S,
1), SbFs(s, 1, g).

Tl

Tl(s, 1), TLO(s, g), Tl,Cla(g), T105(s),
TIF (s, 1), TICI(s, 1), TIBr(s, 1), Tl:Se(s),
TIOH (s), T1:S(s), T1.S;(s), TIS(s), TISe(s),
T1,Te(s), TITe(s), T ().

In

InO(g), In:0s;(c), InBr(c), Inl.(g),
Inl;(g), InS(c), InSe(c), In.Se;(c), InTe(c),
InP(c), InAs(c), InSb(e, 1), In(c, 1).

Bt

BiO (g), Bi.0Os(c), BiCls(e, 1, g), BiBrs(c,
l; g)y BiI3(Cy 1) g)y BiF3(Cv l)v BlF(g)v
Bi:Se;(c), BisTes(c).
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