Chemistry of Silicate Vapor and Steam Atmospheres during Formation of the Earth and Moon

Bruce Fegley, Jr.

Planetary Chemistry Laboratory, Department of Earth & Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis MO 63130 USA

Outgassing Processes Workshop 29 May 2019

Acknowledgments

- Francis Albarède and Alain Léger responsible for getting us into this field
- Many coworkers during the past decade
- Gustavo Costa, NASA Glenn
- Nate Jacobson, NASA Glenn
- Alain Léger, University Paris-Sud, lead author, CoRoT-7b
- Katharina Lodders, Washington University
- Roxana Lupu, NASA Ames
- Fred Moynier, Washington University (now IPGP, Paris)
- Kaveh Pahlevan (now ASU, Tempe)
- John Plane, University of Leeds
- Laura Schaefer (now Asst Professor, Stanford)
- Channon Visscher, Washington University (now Dordt College)
- Kelsey Williams, Washington University
- Kevin Zahnle, NASA Ames
- NASA Grant NNX17AC02G (XRP Program)
- NSF Astronomy Program Grants AST-1412175 and AST-1517541

(1) Silicate Vapor Atmospheric Chemistry and ChemicalConstraints on Formation of the Moon

Summary - I

- Oxygen is the major element in rocky material
- Recognized by Victor Goldschmidt in 1928
- Oxygen is 62 atom % of Earth's crust
- Oxygen is 58 atom % of Bulk Silicate Earth
- Oxygen is 58 atom % of Bulk Silicate Moon
- (based on current BSM models by others)
- Hot silicate vapor is O₂ rich and is
- Orders of magnitude more oxidizing than solar composition gas

Summary - II

- 1970s 1990s Experiments, analyses of meteorite samples, and thermodynamics show unique trace element abundances produced by vaporization / condensation of silicates at high oxygen fugacity (partial pressure)
- We apply this knowledge to formation of the Moon
- Presence or absence of analogous signatures constrains the P and T for gas – condensed phase separation (when equilibrium stops) in an open system
- Heavy isotope enrichments for Cl, Ga, K, Rb, Zn indicate loss of hot silicate vapor during lunar formation (Moynier, Sharp, Wang & Jacobsen) – an open system

Summary - III

- Geochemical data show
- No Ce depletion in bulk silicate Moon
- Lunar Lu/Hf, Hf/W, Nd/Sm, Th/U \simeq BSE
- Lunar Rb/Sr, K/U < BSE values
- Can set T_{max} and T_{min} values at each pressure
- Can constrain geochemically realistic lunar formation models

Summary - IV

- But:
- Some key element ratios uncertain, e.g., Hf/W, Th/U for bulk silicate Moon
- Use P,T constraints from our modeling and/or K isotopes to predict these key ratios from chemical equilibrium calculations

(2) Steam Atmosphere Chemistry on the early Earth.

Summary -1

- Reducing gases produced by outgassing of chemically reduced material, either chondritic (H, L, LL, EH, EL, CV) or achondritic (Eucrite) see
- Bukvic 1979 MSc Thesis, MIT, Advisor John S. Lewis
- Schaefer & Fegley 2007 Icarus 186, 462-483
- Schaefer & Fegley 2010 Icarus 208, 438-448
- Zahnle, et al 2010 The Origins of Life pp. 49-66
- Fegley & Schaefer 2014 Treatise on Geochemistry 2nd ed
- Schaefer & Fegley 2017 ApJ 843:120)
- Steam Atmosphere not necessarily steam-rich
- Depends on the unknown redox state of planetary embryo, planetesimal, rocky planet, early Earth, etc.

Gas (vol. %)	CI	СМ	CV	Н	L	LL	EH	EL
H ₂	4.36	2.72	0.24	48.49	42.99	42.97	43.83	14.87
H_2^{-} O	69.47	73.38	17.72	18.61	17.43	23.59	16.82	5.71
ĊH₄	2×10^{-7}	2×10^{-8}	8×10^{-11}	0.74	0.66	0.39	0.71	0.17
CO_2	19.39	18.66	70.54	3.98	5.08	5.51	4.66	9.91
C0 [_]	3.15	1.79	2.45	26.87	32.51	26.06	31.47	67.00
N ₂	0.82	0.57	0.01	0.37	0.33	0.29	1.31	1.85
NH ₃	$5 imes 10^{-6}$	2×10^{-6}	8×10^{-9}	0.01	0.01	9×10^{-5}	0.02	5×10^{-5}
H ₂ S	2.47	2.32	0.56	0.59	0.61	0.74	0.53	0.18
SO_2	0.08	0.35	7.41	1×10^{-8}	1×10^{-8}	3×10^{-8}	1×10^{-8}	1×10^{-8}
Other ^a	0.25	0.17	1.02	0.33	0.35	0.41	0.64	0.29
Total	99.99	99.96	99.95	99.99	99.97	99.96	99.99	99.98

 Table 5
 Major gas compositions of impact-generated atmospheres from chondritic planetesimals at 1500 K and 100 bars

^a'Other' includes gases of the rock-forming elements CI, F, K, Na, P, and S.

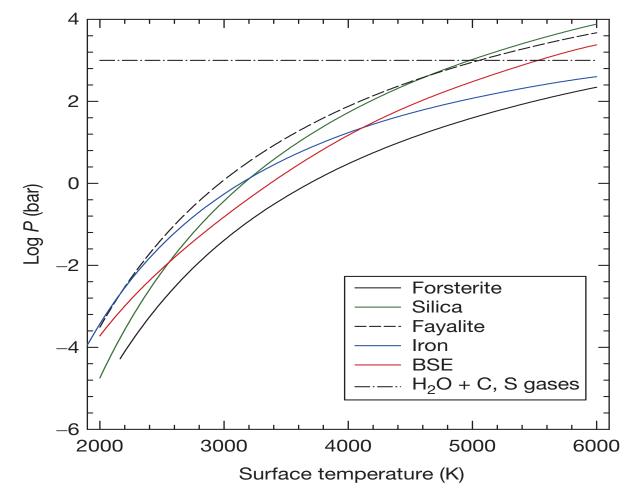
From: Schaefer & Fegley 2010 Icarus 208, 438-448.

Summary -2

- If steam atmosphere is steam rich, Nominal case here
- Silica and many other oxides dissolve in steam
- Greatly different solubility for different oxides
- If steam atmosphere is lost the steam soluble element inventory is changed
- This is potentially important for bulk composition, density, heat balance, interior structure, volatile element inventory
- Spectroscopically active gases in steam atmosphere
- Fegley et al 2016 ApJ 824:103

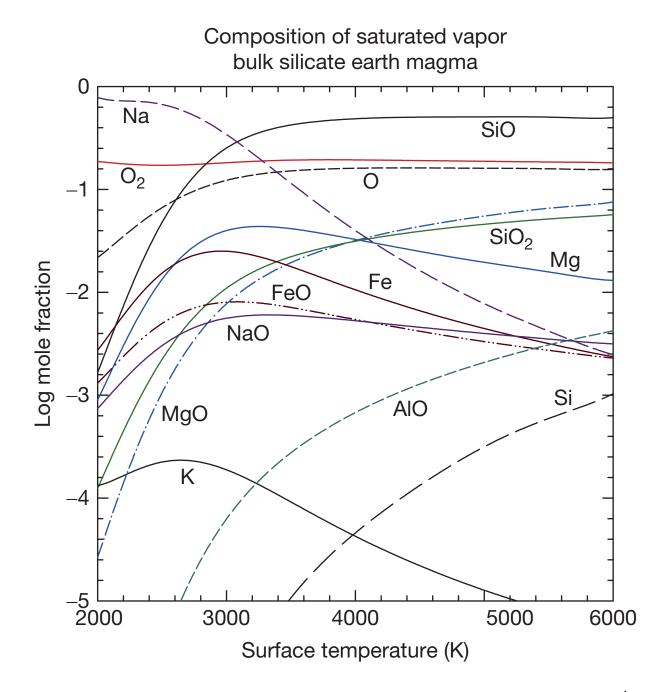
Summary -3

- Astronomical observations show atmospheric escape from some exoplanets – one of which is a hot rocky planet (55 Cancri-e)
- Recent modeling (Zahnle and Catling, 2017; Lopez, 2018; Owen and Wu, 2017; Owen, 2019) shows stellar EUV-driven photo-evaporative mass loss is important for the evolution of hot rocky exoplanets.
- Atmospheric loss from early Earth needs to be seriously considered by cosmochemists


(1) Silicate Vapor Atmospheric Chemistry and ChemicalConstraints on Formation of the Moon

Background

- Cl, Ga, K, Rb, Zn isotopic anomalies indicate lunar material formed at high temperatures from ejecta after a giant impact on the early Earth
- Giant impact models predict high T silicate melt vapor system
- We show chemical equilibrium calculations for a bulk silicate Earth (BSE) composition system over a wide P T range can constrain lunar formation conditions
- We do <u>not</u> say BSM = BSE, this is a model composition


Introduction & Background - 2

- High temperature vaporization/condensation at high O₂ partial pressure produces unique trace element abundance patterns (Fegley & Cameron 1987 EPSL 82, 207-222)
- Lanthanides (Ce/LREE, Nd/Sm)
- Actinides (Th/U)
- Lithophiles (Lu/Hf, Rb/Sr, K/U)
- Hafnium Tungsten

Figure 3 Temperature-dependent vapor pressures of iron metal, forsterite, fayalite, silica, and bulk silicate Earth magma are compared to the total partial pressure of $H_2O + C$, S gases corresponding to the BSE inventory of these volatiles.

From: Fegley & Schaefer 2014 Treatise on Geochemistry 2nd ed

From: Fegley & Schaefer 2014 Treatise on Geochemistry 2nd ed

Oxygen fugacity of silicate vapor

- Look at two examples:
- Knudsen effusion mass spectrometry (KEMS) of pure silica (Kazenas et al 1985)
- Calculated fO₂ of BSE vapor along liquid vapor saturation curve (Visscher & Fegley 2013 Astrophys J 767, L12)

Shown on next two slides

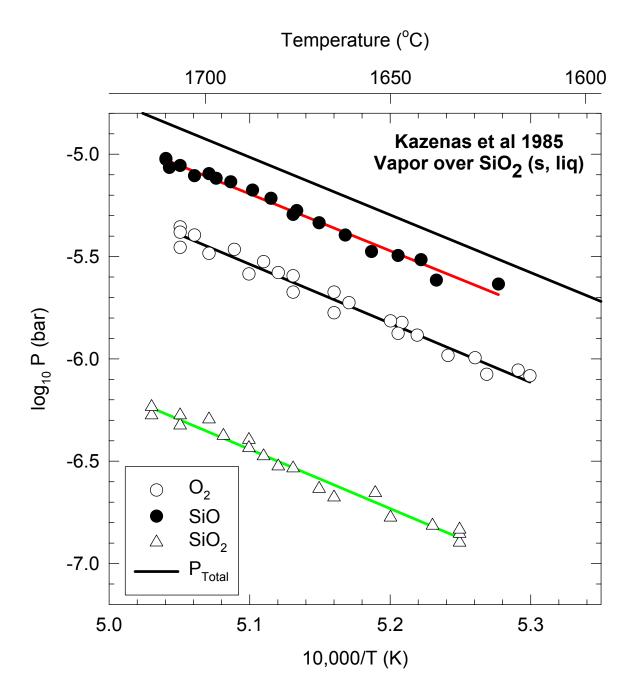
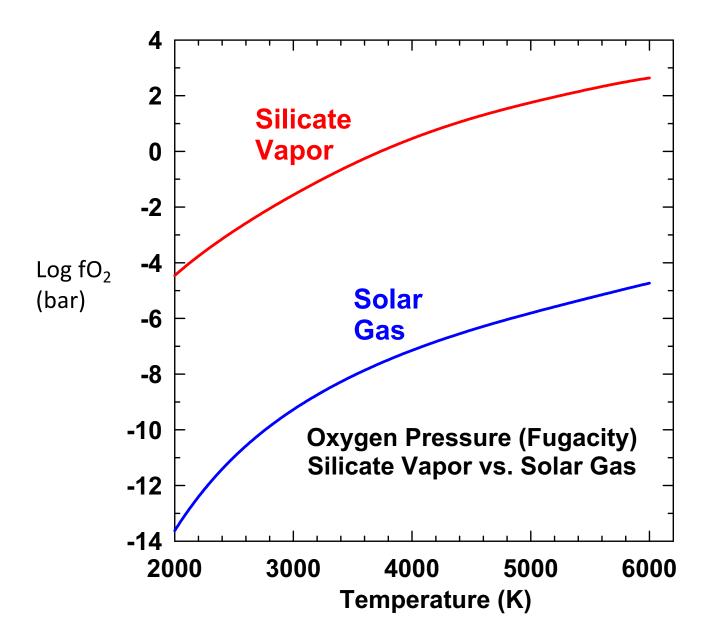
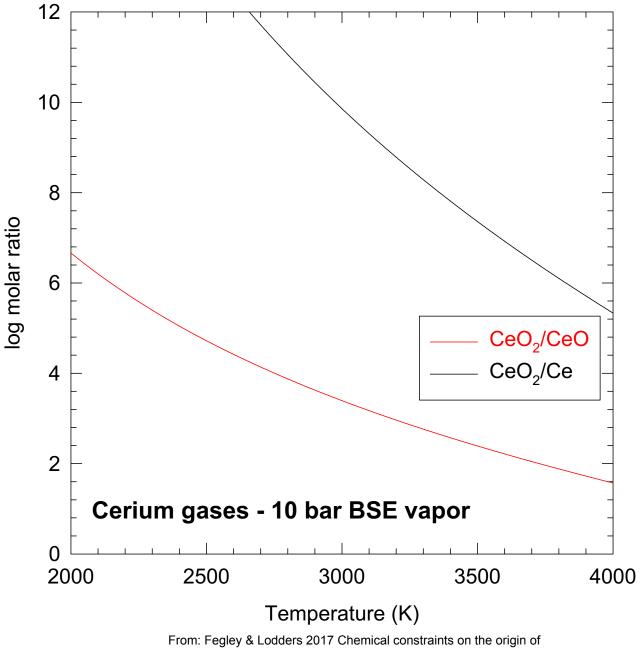
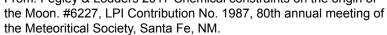



Figure 7-9, Fegley & Osborne, Practical Chemical Thermodynamics for Geoscientists

From: Visscher & Fegley 2013 Astrophys J 767, L12

Chemistry at high O₂ partial pressure in silicate vapor


- R stands for a Rare Earth Element
- Major gases of <u>most</u> REE in astronomical systems are
- Monoxides RO
- Monatomic gas R
- Relevant condensation chemistry at high T is
- 2 RO (gas) + $\frac{1}{2}$ O₂ (gas) \rightarrow R₂O₃ (melt)
- 2 R (gas) + 3/2 O_2 (gas) \rightarrow R₂ O_3 (melt)
- High P(O₂) drives condensation of <u>most</u> REE


REE Condensation Chemistry - 2

- Differences in REE abundance patterns due to
- ΔG° of condensation/vaporization reaction
- MO/M ratio in gas phase (next slide)
- Different activity coefficients for each R₂O₃
- See papers about REE condensation chemistry applied to Ca,Al-rich inclusions
- Boynton 1975 GCA 39, 569-584
- Davis & Grossman 1979 GCA 43, 1611-1632
- Kornacki & Fegley 1986 EPSL 79, 217-234

Cerium Chemistry

- Cerium is notable exception
- Three Ce-bearing gases CeO₂, CeO, Ce
- At high fO₂ CeO₂ is major gas
- Condensation reaction is
- 2 CeO₂ (gas) \leftarrow Ce₂O₃ (melt) + $\frac{1}{2}$ O₂ (gas)
- Higher fO₂ makes Ce more volatile
- (Boynton 1978 LPS IX, 120-122)

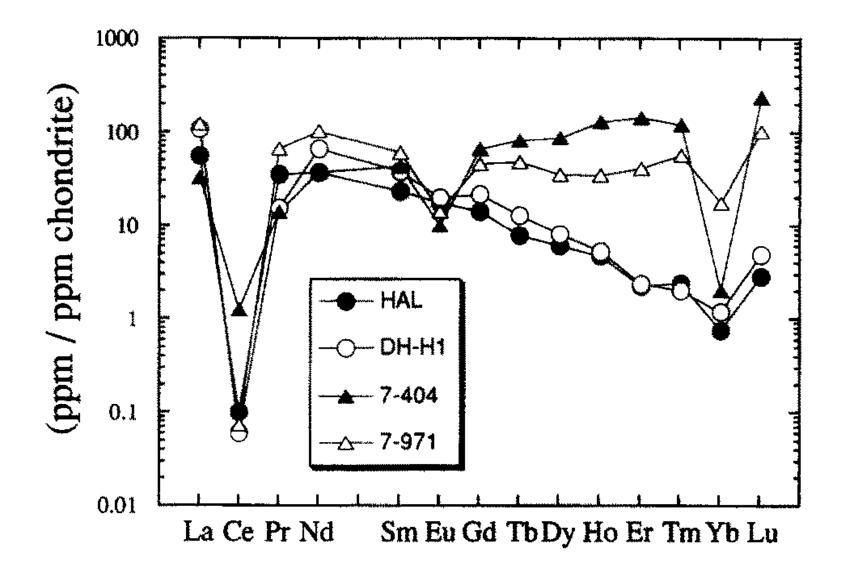
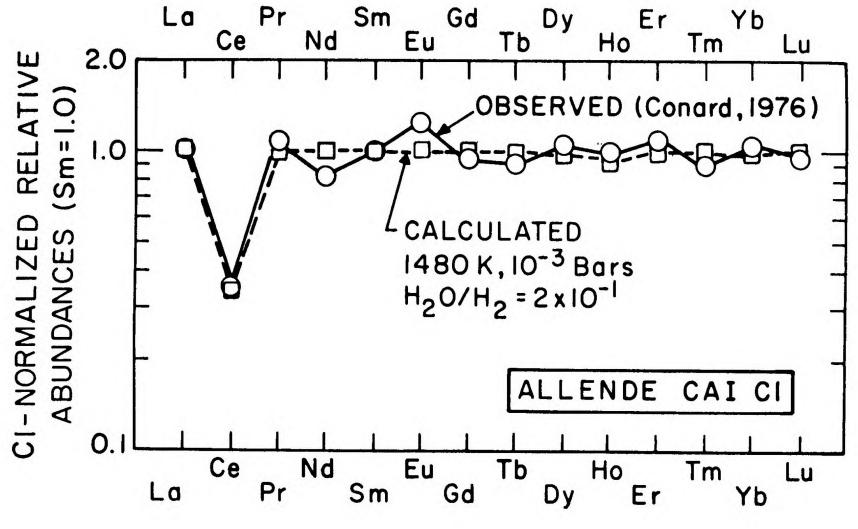
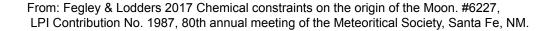
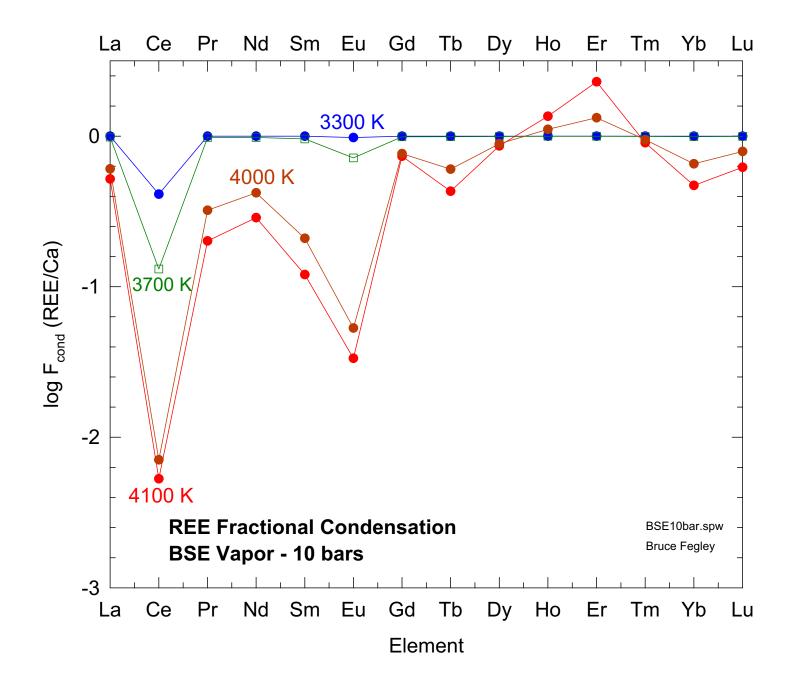



FIG. 8. Trace-element abundances in four HAL-type inclusions show distinctive Ce depletions. Ytterbium is also depleted in all four inclusions, while Pr and Eu are depleted in DH-H1, 7-404, and 7-971. REEs in HAL and DH-H1 are fractionated according to ionic radius, with depleted HREEs indicating melt partitioning. Data are from HINTON et al. (1988) and IRELAND et al. (1988).

From: Fegley 1986 Lunar Planet Sci 18, pp. 220-221.

☞Come back to this later when discussing W/Hf fractionations Geochimica et Cosmochimica Acta Vol. 56, pp. 2503-2520 Copyright © 1992 Pergamon Press Ltd. Printed in U.S.A.


Evidence for distillation in the formation of HAL and related hibonite inclusions


TREVOR R. IRELAND,^{1,2} ERNST K. ZINNER,¹ ALBERT J. FAHEY,^{1,*} and TEZER M. ESAT² ¹Physics Department and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130, USA ²Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia

(Received August 26, 1991; accepted in revised form March 3, 1992)

Cerium Depletions

- Next slide shows REE abundance patterns in melt for isobaric cooling at 10 bar pressure
- Smaller Ce depletions at lower temperature
- No Ce depletion in bulk silicate Moon
- Ringwood 1979 Origin of the Earth & Moon
- Korotev 2005 Chem Erde 65, 297-346
- Temperature at which depletion disappears gives
 T_{max} for lunar formation at that total pressure
- This is \lesssim 3300 K at 10 bars

fO₂ and Th/U Fractionation

- UO_3 (gas) $\leftarrow UO_2$ (melt) + $\frac{1}{2}O_2$ (gas)
- Higher fO₂ makes Uranium more volatile
- ThO (gas) + $\frac{1}{2}$ O₂ (gas) \rightarrow ThO₂ (melt)
- Higher fO₂ makes Thorium more refractory
- BSE-normalized atomic Th/U ~ 2.4 at 3300 K, 10 bars BSE vapor (should be unity if unfractionated from BSE model composition)

P(O₂) and W/Hf Fractionation

- Higher fO₂ makes W more volatile
 Fegley & Palme 1985 EPSL 72, 311-326
- WO₃ (gas) ← W (metal) + 3/2 O₂ (gas)
- Higher P(O₂) makes Hf more refractory
- Fegley et al 2012 Bull Am Astron Soc 44
- HfO (gas) + ½ O₂ (gas) = HfO₂ (melt)
- BSE-normalized W/Hf ~ 1 at 3300 K, 10 bars BSE vapor (assuming WO₃ condenses in silicate melt)
- BSE-normalized W/Hf << 1 at 3300 K if WO₃ does not condense in silicate melt)

W Depletion – CAI C1

- CAI C1 depleted in W and also in Ce
- Same fO₂ gives both depletions
- (2nd & 3rd slides after this one)
- This fO₂ slightly lower than predicted for proto-lunar disk (next slide)
- Visscher & Fegley 2013 ApJ 767, L12

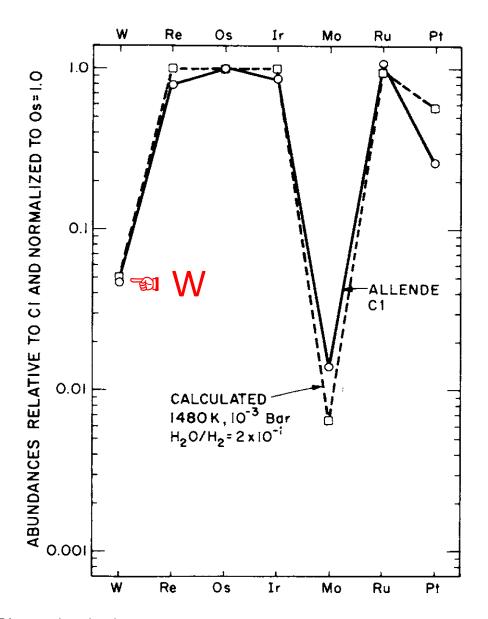
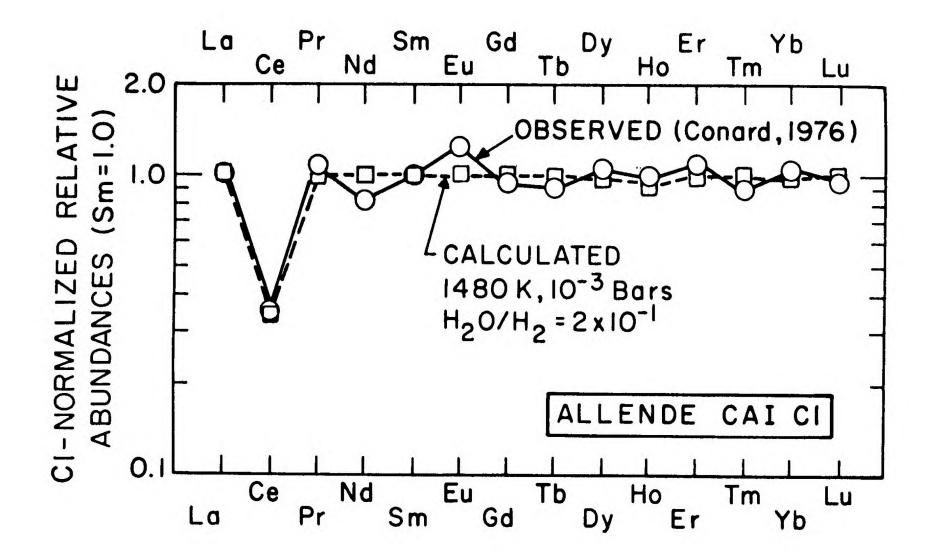



Fig. 7.7.4. Observed and calculated refractory-metal abundances in Allende FUN inclusion Cl. The observed composition is from EDS/SEM analyses of metal grains by D. A. Wark.

From: Fegley & Palme 1985 EPSL 72, 311-326

From: Fegley 1986 Lunar Planet Sci 18, pp. 220-221.

Lu/Hf Fractionation

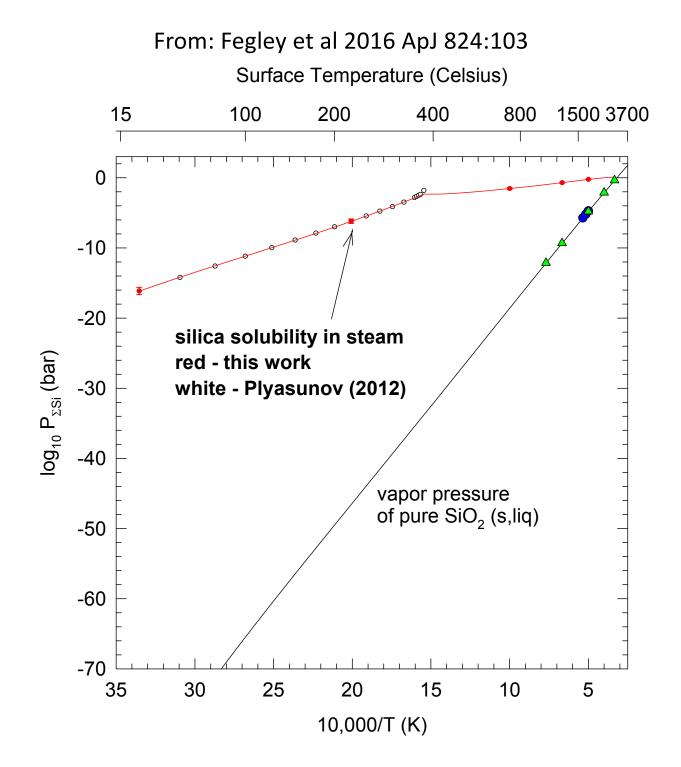
- Hf more refractory than Lu at high fO₂
- HfO/Hf ~ 772,000 vs LuO/Lu ~ 23,000
- At 3300 K and 10 bars BSE vapor
- 2 LuO (gas) + $\frac{1}{2}$ O₂ (gas) \rightarrow Lu₂O₃ (melt)
- HfO (gas) + $\frac{1}{2}$ O₂ (gas) \rightarrow HfO₂ (melt)
- Higher fO₂ drives condensation reactions
- Much larger MO/M for Hf makes it more refractory than Lu

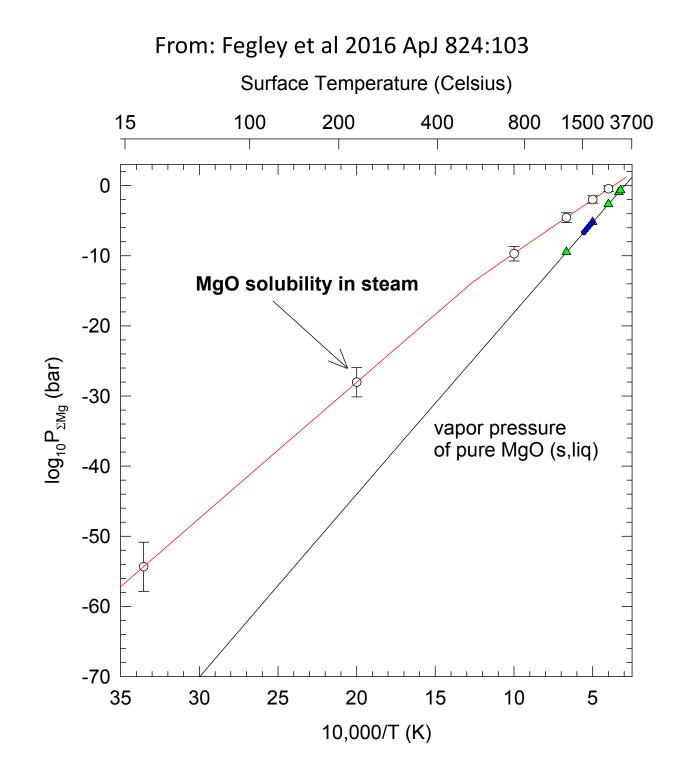
Rb/Sr Fractionation

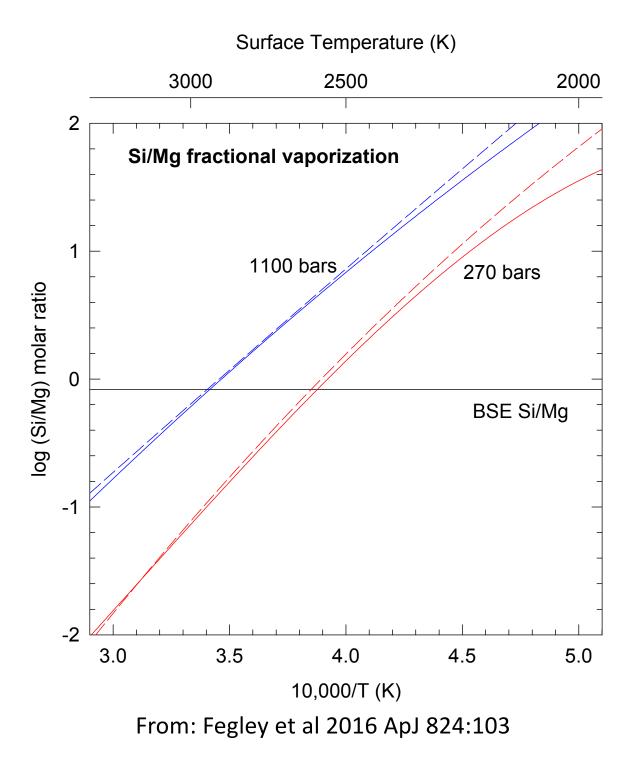
- Higher fO₂ makes Rb *slightly* more refractory
- Rb/RbO ~ 2.7 vs Sr/SrO ~ 0.07 gas phase
- At 3300 K, 10 bars BSE vapor
- 2 Rb (gas) + $\frac{1}{2}$ O₂ (gas) \rightarrow Rb₂O (melt)
- But this reaction also occurs
- 2 RbO \leftarrow Rb₂O (melt) + $\frac{1}{2}$ O₂ (gas)
- In contrast, no effect of fO₂ on
- SrO (gas) = SrO (melt)
- BSE-normalized Rb/Sr ~ 10⁻³, 3300 K 10 bars

K/U Fractionation

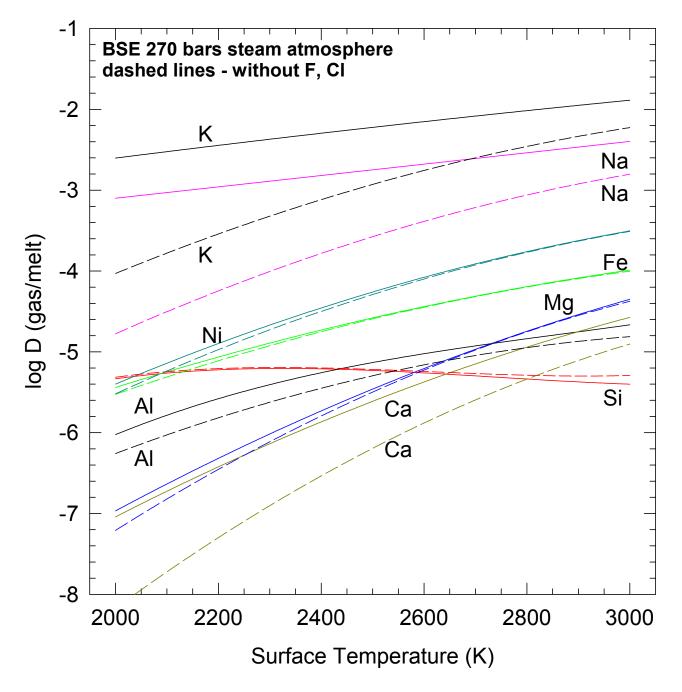
- Opposite effects of higher fO₂ on K and U
- K/KO ~ 5 vs U/UO₃ ~ 2 × 10⁻¹² gas phase
- At 3300 K, 10 bars BSE vapor
- 2 K (gas) + $\frac{1}{2}$ O₂ (gas) \rightarrow K₂O (melt)
- Higher fO₂ makes K more refractory
- UO_3 (gas) $\leftarrow UO_2$ (melt) + $\frac{1}{2}O_2$ (gas)
- Higher fO₂ makes Uranium more volatile
- BSE-normalized K/U ~ 0.004, 3300 K 10 bars

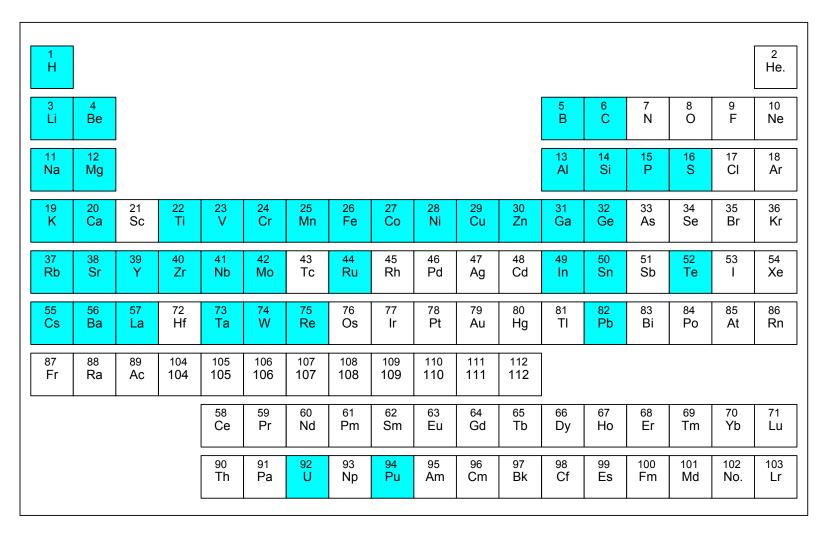

Key Points

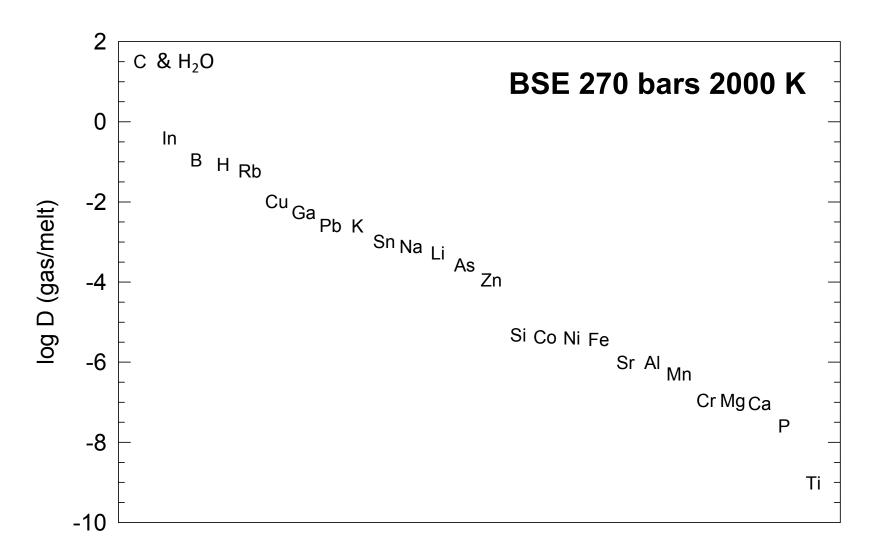

- High O₂ partial P in hot silicate vapor
- Giant Impact models predict hot silicate melt vapor system
- The high P(O₂) and high T fractionate trace elements: Ce, Hf/W, K/U, Th/U
- These effects are not seen, either
- (a) No high T vapor lost as isotopes show OR
- (b) Melt vapor separated between some T_{max} and T_{min} constrained by equilibrium results

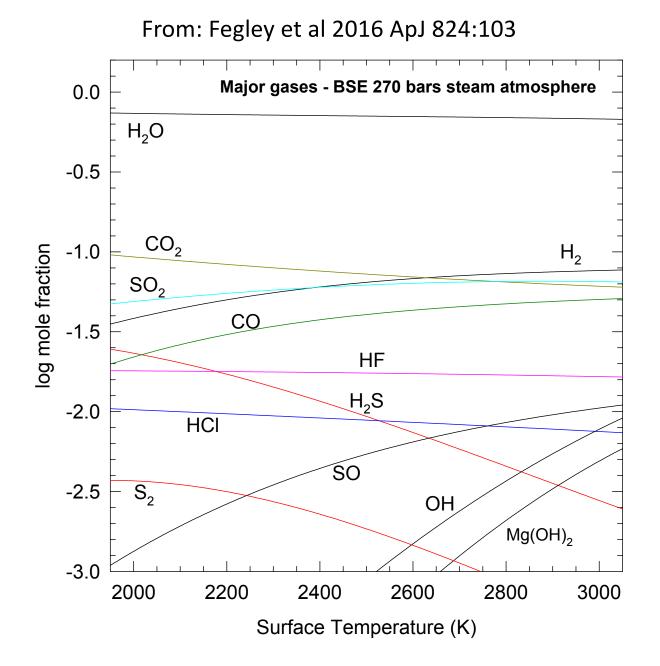

(2) Steam Atmosphere Chemistry on the early Earth.

A few examples about this


- Silica and many other oxides dissolve in steam
- Greatly different solubility for different oxides
- If steam atmosphere is lost the steam soluble element inventory is changed
- This is potentially important for bulk composition, density, heat balance, interior structure, volatile element inventory
- Spectroscopically active gases in steam atmosphere
- Details are in Fegley et al 2016 ApJ 824:103




From: Fegley et al 2016 ApJ 824:103


Steam Soluble Elements (from references cited in Fegley et al 2016 ApJ)

From: Fegley et al 2019 Chemie der Erde (Geochemistry)

From: Fegley et al 2019 Chemie der Erde (Geochemistry)

Key Points

- Steam atmosphere magma ocean phase:
- Silicon and several other major rock-forming elements dissolve in steam
- Very different solubility for different elements
- If steam atmosphere is lost the steam soluble element inventory is changed
- Many potentially observable gases applies to hot rocky exoplanets