The Planetary Chemistry Laboratory at Washington University in Saint Louis

October 29, 2009


Filed under: — Hugh @ 00:38

CONDOR – Introduction

The CONDOR chemical equilibrium code is a robust and versatile code that has been used successfully for modeling chemistry in the solar nebula (1; 2), in the atmospheres and circumstellar envelopes of cool stars (3, 4, 5, 6), in the atmosphere of Venus (7), in volcanic gases on Jupiter’s satellite Io (8, 9), and in the atmospheres of gas giant planets and brown dwarfs (10, 11; 12; 13).

This web page gives a description of how the CONDOR code operates. The web pages under this one provide extensive comparisons of CONDOR code results with the results of other chemical equilibrium codes and with observed compositions of natural and man-made systems that have reached or closely approach chemical equilibrium. These comparisons demonstrate the versatility of the CONDOR code, which can be applied to a wide range of problems in many areas of science and technology.


1. Lodders, K., and B. Fegley, Jr. 1993. Actinide and lanthanide chemistry at high C/O ratios in the solar nebula. Earth Planet. Sci. Lett. 117, 125-145. reprint

2. Lauretta, D. S., and K. Lodders 1997. The cosmochemical behavior of beryllium and boron. Earth Planet. Sci. Lett. 146, 315-327. reprint

3. Lodders, K., and B. Fegley, Jr. 1995. The origin of circumstellar SiC grains found in meteorites. Meteoritics 30, 661-678. reprint

4. Lodders, K., and B. Fegley, Jr. 1997a. Complementary trace element abundances in meteoritic SiC grains and carbon star atmospheres. Astrophys. J. 484, L71-L74. reprint

5. Lodders, K., and B. Fegley, Jr. 1997b. Condensation chemistry of carbon stars. In Astrophysical Implications of the Laboratory Study of Presolar Materials (T. J. Bernatowicz and E. Zinner, Eds.), pp. 391-423. AIP Conference Proceedings 402, American Institute of Physics, Woodbury, NY. reprint

6. Lodders, K., and B. Fegley, Jr. 1999. Condensation chemistry of circumstellar grains. In Asymptotic Giant Branch Stars (T. Le Bertre, A. L├Ębre, and C. Waelkens, Eds.), pp. 279-291. IAU Symposium No. 191, Astronomical Society of the Pacific, San Francisco, CA. reprint

7. Fegley, B., Jr., M. Yu. Zolotov, and K. Lodders 1997. The oxidation state of the lower atmosphere and surface of Venus. Icarus 125, 416-439. reprint

8. Zolotov, M. Yu., and B. Fegley, Jr. 1998a. Volcanic production of sulfur monoxide (SO) on Io. Icarus 132, 431-434. reprint

9. Zolotov, M. Yu., and B. Fegley, Jr. 1998b. Volcanic origin of disulfur monoxide (S2O) on Io. Icarus 133, 293-297. reprint

10. Fegley, B., Jr., and K. Lodders 1994. Chemical models of the deep atmospheres of Jupiter and Saturn. Icarus 110, 117-154. reprint

11. Fegley, B., Jr., and K. Lodders 1996. Atmospheric chemistry of the brown dwarf Gliese 229B: Thermochemical equilibrium predictions. Astrophys. J. 472, L37-L39. reprint

12. Lodders, K. 1999a. Alkali element chemistry in cool dwarf atmospheres. Astrophys. J. 519, 793-801. reprint

13. Lodders, K., and B. Fegley, Jr. 1994. The origin of carbon monoxide in Neptune’s atmosphere. Icarus 112, 368-375. reprint

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress